1,366
Views
22
CrossRef citations to date
0
Altmetric
Report

Hippo pathway contributes to cisplatin resistant-induced EMT in nasopharyngeal carcinoma cells

, , , , , , , , & show all
Pages 1601-1610 | Received 21 Apr 2017, Accepted 01 Jul 2017, Published online: 10 Aug 2017

References

  • Wei KR, Zheng RS, Zhang SW, Liang ZH, Ou ZX, Chen WQ. Nasopharyngeal carcinoma incidence and mortality in China in 2010. Chin J Cancer 2014; 33:381-7. PMID:25096544
  • Sun R, Wang X, Li X. Correlation Analysis of Nasopharyngeal Carcinoma TNM Staging with Serum EA IgA and VCA IgA in EBV and VEGF–C and –D. Med Sci Monit 2015; 21:2105-9. doi:10.12659/MSM.893415. PMID:26191775
  • Wu EL, Riley CA, Hsieh MC, Marino MJ, Wu XC, McCoul ED. Chronic sinonasal tract inflammation as a precursor to nasopharyngeal carcinoma and sinonasal malignancy in the United States. Int Forum Allergy Rhinol 2017. doi:10.1002/alr.21956
  • Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet 2005; 365:2041-54. doi:10.1016/S0140-6736(05)66698-6. PMID:15950718
  • Feng FT, Cui Q, Liu WS, Guo YM, Feng QS, Chen LZ, Xu M, Luo B, Li DJ, Hu LF, et al. A single nucleotide polymorphism in the Epstein–Barr virus genome is strongly associated with a high risk of nasopharyngeal carcinoma. Chin J Cancer 2015; 34:563-72. doi:10.1186/s40880-015-0073-z. PMID:26675171
  • Liu Z, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, Huang QH, Xie SH, Cao SM, Shao JY, et al. Quantification of familial risk of nasopharyngeal carcinoma in a high–incidence area. Cancer 2017; 123(14):2716-2725. doi:10.1002/cncr.30643. PMID:28241094
  • Wang C, Lin XL, Fan YY, Liu YT, Zhang XL, Lu YK, Xu CH, Chen YM. Diet quality scores and risk of Nasopharyngeal Carcinoma in Chinese adults: a case–control study. Nutrients 2016; 8:112. doi:10.3390/nu8030112. PMID:26927167
  • Lin JH, Jiang CQ, Ho SY, Zhang WS, Mai ZM, Xu L, Lo CM, Lam TH. Smoking and nasopharyngeal carcinoma mortality: a cohort study of 101,823 adults in Guangzhou, China. BMC Cancer 2015; 15:906. doi:10.1186/s12885-015-1902-9. PMID:26573573
  • Sun Y, Li WF, Chen NY, Zhang N, Hu GQ, Xie FY, Sun Y, Chen XZ, Li JG, Zhu XD, et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial. Lancet Oncol 2016; 17:1509-20. doi:10.1016/S1470-2045(16)30410-7. PMID:27686945
  • Hsu CH, Chen CL, Hong RL, Chen KL, Lin JF, Cheng AL. Prognostic value of multidrug resistance 1, glutathione–S–transferase–pi and p53 in advanced nasopharyngeal carcinoma treated with systemic chemotherapy. Oncology 2002; 62:305-12. doi:10.1159/000065061. PMID:12138237
  • Wang X, Masters JR, Wong YC, Lo AK, Tsao SW. Mechanism of differential sensitivity to cisplatin in nasopharyngeal carcinoma cells. Anticancer Res 2001; 21:403-8. PMID:11299769
  • Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9:265-73. doi:10.1038/nrc2620. PMID:19262571
  • Ksiazkiewicz M, Markiewicz A, Zaczek AJ. Epithelial–mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology 2012; 79:195-208. doi:10.1159/000337106. PMID:22488297
  • Samatov TR, Tonevitsky AG, Schumacher U. Epithelial–mesenchymal transition: focus on metastatic cascade, alternative splicing, non–coding RNAs and modulating compounds. Mol Cancer 2013; 12:107. doi:10.1186/1476-4598-12-107. PMID:24053443
  • Luo WR, Chen XY, Li SY, Wu AB, Yao KT. Neoplastic spindle cells in nasopharyngeal carcinoma show features of epithelial–mesenchymal transition. Histopathology 2012; 61:113-22. doi:10.1111/j.1365-2559.2012.04205.x. PMID:22486228
  • Jiang H, Gao M, Shen Z, Luo B, Li R, Jiang X, Ding R, Ha Y, Wang Z, Jie W. Blocking PI3K/Akt signaling attenuates metastasis of nasopharyngeal carcinoma cells through induction of mesenchymal–epithelial reverting transition. Oncol Rep 2014; 32:559-66. PMID:24889918
  • Wu Y, Shen Z, Wang K, Ha Y, Lei H, Jia Y, Ding R, Wu D, Gan S, Li R, et al. High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: role in TGF–beta1–induced epithelia–to–mesenchymal transition. Sci Rep 2017; 7:42507. doi:10.1038/srep42507. PMID:28198387
  • Hou Y, Zhu Q, Li Z, Peng Y, Yu X, Yuan B, Liu Y, Liu Y, Yin L, Peng Y, et al. The FOXM1–ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells. Cell Death Dis 2017; 8:e2659. doi:10.1038/cddis.2017.53. PMID:28277541
  • Yu FX, Zhao B, Guan KL. Hippo pathway in organ Size control, tissue homeostasis, and cancer. Cell 2015; 163:811-28. doi:10.1016/j.cell.2015.10.044. PMID:26544935
  • Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13:246-57. doi:10.1038/nrc3458. PMID:23467301
  • Deng J, Lei W, Xiang X, Zhang L, Lei J, Gong Y, Song M, Wang Y, Fang Z, Yu F, et al. Cullin 4A (CUL4A), a direct target of miR–9 and miR–137, promotes gastric cancer proliferation and invasion by regulating the Hippo signaling pathway. Oncotarget 2016; 7:10037-50. PMID:26840256
  • Piccolo S, Cordenonsi M, Dupont S. Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res 2013; 19:4925-30. doi:10.1158/1078-0432.CCR-12-3172. PMID:23797907
  • Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2014; 13:63-79. doi:10.1038/nrd4161. PMID:24336504
  • Li W, Dong S, Wei W, Wang G, Zhang A, Pu P, Jia Z. The role of transcriptional coactivator TAZ in gliomas. Oncotarget 2016; 7:82686-99. PMID:27764783
  • Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell 2016; 29:783-803. doi:10.1016/j.ccell.2016.05.005. PMID:27300434
  • Brusgard JL, Choe M, Chumsri S, Renoud K, MacKerell AD, Jr, Sudol M, Passaniti A. RUNX2 and TAZ–dependent signaling pathways regulate soluble E–Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget 2015; 6:28132-50. doi:10.18632/oncotarget.4654. PMID:26320173
  • Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, et al. The Hippo transducer TAZ confers cancer stem cell–related traits on breast cancer cells. Cell 2011; 147:759-72. doi:10.1016/j.cell.2011.09.048. PMID:22078877
  • Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F, James JD, Gumin J, Diefes KL, Kim SH, et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 2011; 25:2594-609. doi:10.1101/gad.176800.111. PMID:22190458
  • Chen G, Xie J, Huang P, Yang Z. Overexpression of TAZ promotes cell proliferation, migration and epithelial–mesenchymal transition in ovarian cancer. Oncol Lett 2016; 12:1821-5. PMID:27588129
  • Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL. TAZ promotes cell proliferation and epithelial–mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 2008; 28:2426-36. doi:10.1128/MCB.01874-07. PMID:18227151
  • Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S, Xiong Y, Lei QY, Guan KL. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial–mesenchymal transition. J Biol Chem 2009; 284:13355-62. doi:10.1074/jbc.M900843200. PMID:19324877
  • Xie D, Cui J, Xia T, Jia Z, Wang L, Wei W, Zhu A, Gao Y, Xie K, Quan M. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression. Oncotarget 2015; 6:35949-63. PMID:26416426
  • Li Z, Wang Y, Zhu Y, Yuan C, Wang D, Zhang W, Qi B, Qiu J, Song X, Ye J, et al. The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol Oncol 2015; 9:1091-105. doi:10.1016/j.molonc.2015.01.007. PMID:25704916
  • Xiao H, Jiang N, Zhou B, Liu Q, Du C. TAZ regulates cell proliferation and epithelial–mesenchymal transition of human hepatocellular carcinoma. Cancer Sci 2015; 106:151-9. doi:10.1111/cas.12587. PMID:25495189
  • Wang Q, Xu Z, An Q, Jiang D, Wang L, Liang B, Li Z. TAZ promotes epithelial to mesenchymal transition via the upregulation of connective tissue growth factor expression in neuroblastoma cells. Mol Med Rep 2015; 11:982-8. PMID:25354978
  • Lai D, Ho KC, Hao Y, Yang X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 2011; 71:2728-38. doi:10.1158/0008-5472.CAN-10-2711. PMID:21349946
  • Zhou X, Wang S, Wang Z, Feng X, Liu P, Lv XB, Li F, Yu FX, Sun Y, Yuan H, et al. Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Invest 2015; 125:2123-35. doi:10.1172/JCI79573. PMID:25893606
  • Fujimoto D, Ueda Y, Hirono Y, Goi T, Yamaguchi A. PAR1 participates in the ability of multidrug resistance and tumorigenesis by controlling Hippo–YAP pathway. Oncotarget 2015; 6:34788-99. PMID:26431277
  • Chan JW, Parvathaneni U, Yom SS. Reducing radiation–related morbidity in the treatment of nasopharyngeal carcinoma. Future Oncol 2017; 13:425-31. doi:10.2217/fon-2016-0410. PMID:27875901
  • Townsend DM, Tew KD, He L, King JB, Hanigan MH. Role of glutathione S–transferase Pi in cisplatin–induced nephrotoxicity. Biomed Pharmacother 2009; 63:79-85. doi:10.1016/j.biopha.2008.08.004. PMID:18819770
  • Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin–induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology 2016; 371:58-66. doi:10.1016/j.tox.2016.10.001. PMID:27717837
  • Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self–defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 2012; 64:706-21. doi:10.1124/pr.111.005637. PMID:22659329
  • Matteucci E, Maroni P, Luzzati A, Perrucchini G, Bendinelli P, Desiderio MA. Bone metastatic process of breast cancer involves methylation state affecting E–cadherin expression through TAZ and WWOX nuclear effectors. Eur J Cancer 2013; 49:231-44. doi:10.1016/j.ejca.2012.05.006. PMID:22717556
  • Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15:178-96. doi:10.1038/nrm3758. PMID:24556840
  • Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS, Ali S, Abbruzzese JL, Gallick GE, Sarkar FH. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine–resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 2009; 69:2400-7. doi:10.1158/0008-5472.CAN-08-4312. PMID:19276344
  • Wu Q, Wang R, Yang Q, Hou X, Chen S, Hou Y, Chen C, Yang Y, Miele L, Sarkar FH, et al. Chemoresistance to gemcitabine in hepatoma cells induces epithelial–mesenchymal transition and involves activation of PDGF–D pathway. Oncotarget 2013; 4:1999-2009. doi:10.18632/oncotarget.1471. PMID:24158561
  • Yang Q, Huang J, Wu Q, Cai Y, Zhu L, Lu X, Chen S, Chen C, Wang Z. Acquisition of epithelial–mesenchymal transition is associated with Skp2 expression in paclitaxel–resistant breast cancer cells. Br J Cancer 2014; 110:1958-67. doi:10.1038/bjc.2014.136. PMID:24642627
  • Chen DJ, Chen W, Jiang H, Yang H, Wang YC, Chen JH. Downregulation of DOCK1 sensitizes bladder cancer cells to cisplatin through preventing epithelial–mesenchymal transition. Drug Des Devel Ther 2016; 10:2845-53. doi:10.2147/DDDT.S101998. PMID:27660415
  • Zhang P, Liu H, Xia F, Zhang QW, Zhang YY, Zhao Q, Chao ZH, Jiang ZW, Jiang CC. Epithelial–mesenchymal transition is necessary for acquired resistance to cisplatin and increases the metastatic potential of nasopharyngeal carcinoma cells. Int J Mol Med 2014; 33:151-9. PMID:24173500
  • Zhou X, Lei QY. Regulation of TAZ in cancer. Protein Cell 2016; 7:548-61. doi:10.1007/s13238-016-0288-z. PMID:27412635
  • Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, Benedetto AD, Todaro M, Stassi G, Sperati F, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 2015; 34:681-90. doi:10.1038/onc.2014.5. PMID:24531710
  • Zhao Y, Yang X. Regulation of sensitivity of tumor cells to antitubulin drugs by Cdk1–TAZ signalling. Oncotarget 2015; 6:21906-17. doi:10.18632/oncotarget.4259. PMID:26183396
  • Tian T, Li A, Lu H, Luo R, Zhang M, Li Z. TAZ promotes temozolomide resistance by upregulating MCL–1 in human glioma cells. Biochem Biophys Res Commun 2015; 463:638-43. doi:10.1016/j.bbrc.2015.05.115. PMID:26043698
  • Wang R, Li Y, Hou Y, Yang Q, Chen S, Wang X, Wang Z, Yang Y, Chen C, Wu Q. The PDGF–D/miR–106a/Twist1 pathway orchestrates epithelial–mesenchymal transition in gemcitabine resistance hepatoma cells. Oncotarget 2015; 6:7000-10. doi:10.18632/oncotarget.3193. PMID:25760076
  • Yang Q, Huang J, Wu Q, Cai Y, Zhu L, Lu X, Chen S, Chen C, Wang Z. Acquisition of epithelial–mesenchymal transition is associated with Skp2 expression in paclitaxel–resistant breast cancer cells. Br J Cancer 2014; 110:1958-67. doi:10.1038/bjc.2014.136. PMID:24642627
  • Wang L, Ye X, Cai X, Su J, Ma R, Yin X, Zhou X, Li H, Wang Z. Curcumin suppresses cell growth and invasion and induces apoptosis by down–regulation of Skp2 pathway in glioma cells. Oncotarget 2015; 6:18027-37. doi:10.18632/oncotarget.4090. PMID:26046466
  • Zhou X, Su J, Feng S, Wang L, Yin X, Yan J, Wang Z. Antitumor activity of curcumin is involved in down–regulation of YAP/TAZ expression in pancreatic cancer cells. Oncotarget 2016; 7:79076-88. PMID:27738325
  • Ma J, Zeng F, Ma C, Pang H, Fang B, Lian C, Yin B, Zhang X, Wang Z, Xia J. Synergistic reversal effect of epithelial–to–mesenchymal transition by miR–223 inhibitor and genistein in gemcitabine–resistant pancreatic cancer cells. Am J Cancer Res 2016; 6:1384-95. PMID:27429851
  • Yang Q, Wang Y, Lu X, Zhao Z, Zhu L, Chen S, Wu Q, Chen C, Wang Z. MiR–125b regulates epithelial–mesenchymal transition via targeting Sema4C in paclitaxel–resistant breast cancer cells. Oncotarget 2015; 6:3268-79. doi:10.18632/oncotarget.3065. PMID:25605244
  • Wang L, Hou Y, Yin X, Su J, Zhao Z, Ye X, Zhou X, Zhou L, Wang Z. Rottlerin inhibits cell growth and invasion via down–regulation of Cdc20 in glioma cells. Oncotarget 2016; 7:69770-82. PMID:27626499

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.