1,240
Views
16
CrossRef citations to date
0
Altmetric
Review

Double-stranded telomeric DNA binding proteins: Diversity matters

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1568-1577 | Received 22 May 2017, Accepted 01 Jul 2017, Published online: 10 Aug 2017

References

  • McEachern MJ, Krauskopf A, Blackburn EH. Telomeres and their control. Annu Rev Genet. 2000;34:331-58. https://doi.org/10.1146/annurev.genet.34.1.331. PMID:11092831
  • Olovnikov AM. Principle of marginotomy in template synthesis of polynucleotides [in Russian]. Dokl Akad Nauk SSSR. 1971;201:1496-9. PMID:5158754
  • Watson JD. Origin of concatemeric T7 DNA. Nat New Biol. 1972;239:197-201. https://doi.org/10.1038/newbio239197a0. PMID:4507727
  • Maciejowski J, de Lange T. Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18:175-86. https://doi.org/10.1038/nrm.2016.171. PMID:28096526
  • Nosek J, Kosa P, Tomáška Ľ. On the origin of telomeres: A glimpse at the pre-telomerase world. BioEssays. 2006;28:182-90. https://doi.org/10.1002/bies.20355. PMID:16435294
  • Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405-13. https://doi.org/10.1016/0092-8674(85)90170-9. PMID:3907856
  • Greider CW, Blackburn EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987;51:887-98. https://doi.org/10.1016/0092-8674(87)90576-9. PMID:3319189
  • Blackburn EH, Collins K. Telomerase: An RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol. 2011;3:a003558. https://doi.org/10.1101/cshperspect.a003558. PMID:20660025
  • Pardue ML, DeBaryshe PG. Telomeres and telomerase: More than the end of the line. Chromosoma. 1999;108:73-82. https://doi.org/10.1007/s004120050354. PMID:10382069
  • de Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol. 2010;75:167-77. https://doi.org/10.1101/sqb.2010.75.017. PMID:21209389
  • Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301-34. https://doi.org/10.1146/annurev.genet.41.110306.130350. PMID:18680434
  • de Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2100-10. https://doi.org/10.1101/gad.1346005. PMID:16166375
  • Klobutcher LA, Swanton MT, Donini P, Prescott DM. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3’ terminus. Proc Natl Acad Sci U S A. 1981;78:3015-9. https://doi.org/10.1073/pnas.78.5.3015. PMID:6265931
  • Gottschling DE, Cech TR. Chromatin structure of the molecular ends of Oxytricha macronuclear DNA: Phased nucleosomes and a telomeric complex. Cell. 1984;38:501-10. https://doi.org/10.1016/0092-8674(84)90505-1. PMID:6432344
  • Gottschling DE, Zakian VA. Telomere proteins: Specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell. 1986;47:195-205. https://doi.org/10.1016/0092-8674(86)90442-3. PMID:3094961
  • Raghuraman MK, Cech TR. Assembly and self-association of Oxytricha telomeric nucleoprotein complexes. Cell. 1989;59:719-28. https://doi.org/10.1016/0092-8674(89)90018-4. PMID:2582492
  • Fang G, Gray JT, Cech TR. Oxytricha telomere-binding protein: Separable DNA-binding and dimerization domains of the alpha-subunit. Genes Dev. 1993;7:870-82. https://doi.org/10.1101/gad.7.5.870. PMID:8491383
  • Sheng H, Hou Z, Schierer T, Dobbs DL, Henderson E. Identification and characterization of a putative telomere end-binding protein from Tetrahymena thermophila. Mol Cell Biol. 1995;15:1144-53. https://doi.org/10.1128/MCB.15.3.1144. PMID:7862108
  • Garvik B, Carson M, Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol. 1995;15:6128-38. https://doi.org/10.1128/MCB.15.11.6128. PMID:7565765
  • Lin JJ, Zakian VA. The Saccharomyces Cdc13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci U S A. 1996;93:13760-5. https://doi.org/10.1073/pnas.93.24.13760. PMID:8943008
  • Yu EY, Sun J, Lei M, Lue NF. Analyses of Candida Cdc13 orthologues revealed a novel OB Fold dimer arrangement, dimerization-assisted DNA binding, and substantial structural differences between Cdc13 and RPA70. Mol Cell Biol. 2012;32:186-98. https://doi.org/10.1128/MCB.05875-11. PMID:22025677
  • Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001;292:1171-5. https://doi.org/10.1126/science.1060036. PMID:11349150
  • Tomáška Ľ, Nosek J, Fukuhara H. Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem. 1997;272:3049-56. https://doi.org/10.1074/jbc.272.5.3049. PMID:9006955
  • Nosek J, Tomáška Ľ, Pagáčová B, Fukuhara H. Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem. 1999;274:8850-7. https://doi.org/10.1074/jbc.274.13.8850. PMID:10085128
  • Lejnine S, Makarov VL, Langmore JP. Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. Proc Natl Acad Sci U S A. 1995;92:2393-7. https://doi.org/10.1073/pnas.92.6.2393. PMID:7892278
  • Makarov VL, Lejnine S, Bedoyan J, Langmore JP. Nucleosomal organization of telomere-specific chromatin in rat. Cell. 1993;73:775-87. https://doi.org/10.1016/0092-8674(93)90256-P. PMID:8500170
  • Tommerup H, Dousmanis A, de Lange T. Unusual chromatin in human telomeres. Mol Cell Biol. 1994;14:5777-85. https://doi.org/10.1128/MCB.14.9.5777. PMID:8065312
  • Fajkus J, Kovarík A, Královics R, Bezdĕk M. Organization of telomeric and subtelomeric chromatin in the higher plant Nicotiana tabacum. Mol Gen Genet. 1995;247:633-8. https://doi.org/10.1007/BF00290355. PMID:7603443
  • Steinberg-Neifach O, Lue NF. Telomere DNA recognition in Saccharomycotina yeast: Potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Front Genet. 2015;6:1-10. https://doi.org/10.3389/fgene.2015.00162. PMID:25983743
  • Horvath MP. Structural anatomy of telomere OB proteins. Crit Rev Biochem Mol Biol. 2011;46:409-35. https://doi.org/10.3109/10409238.2011.609295. PMID:21950380
  • Lloyd NR, Dickey TH, Hom RA, Wuttke DS. Tying up the ends: Plasticity in the recognition of single-stranded DNA at telomeres. Biochemistry. 2016;55:5326-40. https://doi.org/10.1021/acs.biochem.6b00496. PMID:27575340
  • Shore D, Nasmyth K. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell. 1987;51:721-32. https://doi.org/10.1016/0092-8674(87)90095-X. PMID:3315231
  • Berman J, Tachibana CY, Tye BK. Identification of a telomere-binding activity from yeast. Proc Natl Acad Sci U S A. 1986;83:3713-7. https://doi.org/10.1007/BF00422108. PMID:3520552
  • Longtine MS, Wilson NM, Petracek ME, Berman J. A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1. Curr Genet. 1989;16:225-39. PMID:2697465
  • Buchman AR, Kimmerly WJ, Rine J, Kornberg RD. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol. 1988;8:210-25. https://doi.org/10.1128/MCB.8.1.210. PMID:3275867
  • Lustig AJ, Kurtz S, Shore D. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science. 1990;250:549-53. https://doi.org/10.1126/science.2237406. PMID:2237406
  • Conrad MN, Wright JH, Wolf AJ, Zakian VA. RAP1 protein interacts with yeast telomeres in vivo: Overproduction alters telomere structure and decreases chromosome stability. Cell. 1990;63:739-50. https://doi.org/10.1016/0092-8674(90)90140-A. PMID:2225074
  • Wright JH, Zakian VA. Protein-DNA interactions in soluble telosomes from Saccharomyces cerevisiae. Nucleic Acids Res. 1995;23:1454-60. https://doi.org/10.1093/nar/23.9.1454. PMID:7784196
  • Feng G, Cech TR. Telomere proteins. In: Blackburn EH, Greider CW, editors. Telomeres. NY(USA): Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1995. p. 69-105
  • Marcand S, Gilson E, Shore D. A protein-counting mechanism for telomere length regulation in yeast. Science. 1997;275:986-90. https://doi.org/10.1126/science.275.5302.986. PMID:9020083
  • Wotton D, Shore D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 1997;11:748-60. https://doi.org/10.1101/gad.11.6.748. PMID:9087429
  • Levy DL, Blackburn EH. Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol. 2004;24:10857-67. https://doi.org/10.1128/MCB.24.24.10857-10867.2004. PMID:15572688
  • Giraldo R, Suzuki M, Chapman L, Rhodes D. Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: A circular dichroism study. Proc Natl Acad Sci U S A. 1994;91:7658-62. PMID:8052638
  • Wellinger RJ, Zakian VA. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: Beginning to end. Genetics. 2012;191:1073-105. https://doi.org/10.1534/genetics.111.137851. PMID:22879408
  • Liu ZP, Tye BK. A yeast protein that binds to vertebrate telomeres and conserved yeast telomeric junctions. Genes Dev. 1991;5:49-59. https://doi.org/10.1101/gad.5.1.49. PMID:1989906
  • Brigati C, Kurtz S, Balderes D, Vidali G, Shore D. An essential yeast gene encoding a TTAGGG repeat-binding protein. Mol Cell Biol. 1993;13:1306-14. https://doi.org/10.1128/MCB.13.2.1306. PMID:8423796
  • Koering CE, Fourel G, Binet-Brasselet E, Laroche T, Klein F, Gilson E. Identification of high affinity Tbf1p-binding sites within the budding yeast genome. Nucleic Acids Res. 2000;28:2519-26. https://doi.org/10.1093/nar/28.13.2519. PMID:10871401
  • Arnerić M, Lingner J. Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Rep. 2007;8:1080-5. https://doi.org/10.1038/sj.embor.7401082. PMID:17917674
  • Brevet V, Berthiau AS, Civitelli L, Donini P, Schramke V, Géli V, Ascenzioni F, Gilson E. The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO J. 2003;22:1697-1706. https://doi.org/10.1093/emboj/cdg155. PMID:12660175
  • Chong L, van Steensel B, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, de Lange T. A human telomeric protein. Science. 1995;270:1663-7. https://doi.org/10.1126/science.270.5242.1663. PMID:7502076
  • Zhong Z, Shiue L, Kaplan S, de Lange T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol. 1992;12:4834-43. https://doi.org/10.1128/MCB.12.11.4834. PMID:1406665
  • van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385:740-3. https://doi.org/10.1038/385740a0. PMID:9034193
  • Bilaud T, Brun C, Ancelin K, Koering CE, Laroche T, Gilson E. Telomeric localization of TRF2, a novel human telobox protein. Nat Genet. 1997;17:236-9. https://doi.org/10.1038/ng1097-236. PMID:9326951
  • Broccoli D, Smogorzewska A, Chong L, de Lange T. Human telomeres contain two distinct Myb–related proteins, TRF1 and TRF2. Nat Genet. 1997;17:231-5. https://doi.org/10.1038/ng1097-231. PMID:9326950
  • Karlseder J, Kachatrian L, Takai H, Mercer K, Hingorani S, Jacks T, de Lange T. Targeted deletion reveals an essential function for the telomere length regulator Trf1. Mol Cell Biol. 2003;23:6533-41. https://doi.org/10.1128/MCB.23.18.6533-6541.2003. PMID:12944479
  • Celli GB, de Lange T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol. 2005;7:712-8. https://doi.org/10.1038/ncb1275. PMID:15968270
  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503-14. https://doi.org/10.1016/S0092-8674(00)80760-6. PMID:10338214
  • Kar A, Willcox S, Griffith JD. Transcription of telomeric DNA leads to high levels of homologous recombination and t-loops. Nucleic Acids Res. 2016;44:9369-80. https://doi.org/10.1093/nar/gkw779. PMID:27608724
  • Li B, Oestreich S, de Lange T. Identification of human Rap1: Implications for telomere evolution. Cell. 2000;101:471-83. https://doi.org/10.1016/S0092-8674(00)80858-2. PMID:10850490
  • Cooper JP, Nimmo ER, Allshire RC, Cech TR. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature. 1997;385:744-7. https://doi.org/10.1038/385744a0. PMID:9034194
  • Tomáška Ľ, Willcox S, Slezáková J, Nosek J, Griffith JD. Taz1 binding to a fission yeast model telomere: Formation of telomeric loops and higher order structures. J Biol Chem. 2004;279:50764-72. https://doi.org/10.1074/jbc.M409790200. PMID:15383525
  • Deng W, Wu J, Wang F, Kanoh J, Dehe P-M, Inoue H, Chen J, Lei M. Fission yeast telomere-binding protein Taz1 is a functional but not a structural counterpart of human TRF1 and TRF2. Cell Res. 2015;25:881-4. https://doi.org/10.1038/cr.2015.76. PMID:26088418
  • Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell. 1994;79:639-48. https://doi.org/10.1016/0092-8674(94)90549-5. PMID:7954830
  • Bianchi A, Smith S, Chong L, Elias P, de Lange T. TRF1 is a dimer and bends telomeric DNA. EMBO J. 1997;16:1785-94. https://doi.org/10.1093/emboj/16.7.1785. PMID:9130722
  • Spink KG, Evans RJ, Chambers A. Sequence-specific binding of Taz1p dimers to fission yeast telomeric DNA. Nucleic Acids Res. 2000;28:527-33. https://doi.org/10.1093/nar/28.2.527. PMID:10606652
  • Konig P, Giraldo R, Chapman L, Rhodes D. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell. 1996;85:125-36. https://doi.org/10.1016/S0092-8674(00)81088-0. PMID:8620531
  • Nishikawa T, Nagadoi A, Yoshimura S, Aimoto S, Nishimura Y. Solution structure of the DNA-binding domain of human telomeric protein, hTRF1. Structure. 1998;6:1057-65. https://doi.org/10.1016/S0969-2126(98)00106-3. PMID:9739097
  • Court R, Chapman L, Fairall L, Rhodes D. How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: A view from high-resolution crystal structures. EMBO Rep. 2005;6:39-45. https://doi.org/10.1038/sj.embor.7400314. PMID:15608617
  • Hanaoka S, Nagadoi A, Yoshimura S, Aimoto S, Li B, de Lange T, Nishimura Y. NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains. J Mol Biol. 2001;312:167-75. https://doi.org/10.1006/jmbi.2001.4924. PMID:11545594
  • Arat NÖ, Griffith JD. Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere. J Biol Chem. 2012;287:41583-94. https://doi.org/10.1074/jbc.M112.415984. PMID:23086976
  • Janoušková E, Nečasová I, Pavloušková J, Zimmermann M, Hluchý M, Marini V, Nováková M, Hofr C. Human Rap1 modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res. 2015;43:2691-700. https://doi.org/10.1093/nar/gkv097. PMID:25675958
  • Kabir S, Hockemeyer D, de Lange T. TALEN gene knockouts reveal no requirement for the conserved human shelterin protein Rap1 in telomere protection and length regulation. Cell Rep. 2014;9:1273-80. https://doi.org/10.1016/j.celrep.2014.10.014. PMID:25453752
  • Kramara J, Willcox S, Gunišová S, Kinský S, Nosek J, Griffith JD, Tomáška Ľ. Tay1 protein, a novel telomere binding factor from Yarrowia lipolytica. J Biol Chem. 2010;285:38078-92. https://doi.org/10.1074/jbc.M110.127605. PMID:20923774
  • Višacká K, Hofr C, Willcox S, Nečasová I, Pavloušková J, Sepšiová R, Wimmerová M, Šimoničová L, Nosek J, Fajkus J, et al. Synergism of the two Myb domains of Tay1 protein results in high affinity binding to telomeres. J Biol Chem. 2012;287:32206-15. https://doi.org/10.1074/jbc.M112.385591. PMID:22815473
  • Vassetzky NS, Gaden F, Brun C, Gasser SM, Gilson E. Taz1p and Teb1p, two telobox proteins in Schizosaccharomyces pombe, recognize different telomere-related DNA sequences. Nucleic Acids Res. 1999;27:4687-94. https://doi.org/10.1093/nar/27.24.4687. PMID10572167
  • Valente LP, Dehé P-M, Klutstein M, Aligianni S, Watt S, Bähler J, Cooper JP. Myb-domain protein Teb1 controls histone levels and centromere assembly in fission yeast. EMBO J. 2013;32:450-60. https://doi.org/10.1038/emboj.2012.339. PMID:23314747
  • Chikashige Y, Ding DQ, Funabiki H, Haraguchi T, Mashiko S, Yanagida M, Hiraoka Y. Telomere-led premeiotic chromosome movement in fission yeast. Science. 1994;264:270-3. https://doi.org/10.1126/science.8146661. PMID:8146661
  • Del Vescovo V, De Sanctis V, Bianchi A, Shore D, Di Mauro E, Negri R. Distinct DNA elements contribute to Rap1p affinity for its binding sites. J Mol Biol. 2004;338:877-93. https://doi.org/10.1016/j.jmb.2004.03.047. PMID:15111054
  • Feldmann EA, Galletto R. The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes. Biochemistry. 2014;53:7471-83. https://doi.org/10.1021/bi501049b. PMID:25382181
  • Feldmann EA, De Bona P, Galletto R. The wrapping loop and Rap1 C-terminal (RCT) domain of yeast Rap1 modulate access to different DNA binding modes. J Biol Chem. 2015;290:11455-66. https://doi.org/10.1074/jbc.M115.637678. PMID:25805496
  • Gustafsson C, Rhodin Edsö J, Cohn M. Rap1 binds single-stranded DNA at telomeric double- and single-stranded junctions and competes with Cdc13 protein. J Biol Chem. 2011;286:45174-85. https://doi.org/10.1074/jbc.M111.300517. PMID:22075002
  • Yu EY, Yen W-F, Steinberg-Neifach O, Lue NF. Rap1 in Candida albicans: An unusual structural organization and a critical function in suppressing telomere recombination. Mol Cell Biol. 2010;30:1254-68. https://doi.org/10.1128/MCB.00986-09.PMID:20008550
  • Procházková Schrumpfová P, Schořová Š, Fajkus J. Telomere- and telomerase-associated proteins and their functions in the plant cell. Front Plant Sci. 2016;7:851. https://doi.org/10.3389/fpls.2016.00851. PMID:27446102
  • Peška V, Procházková Schrumpfová P, Fajkus J. Using the telobox to search for plant telomere binding proteins. Curr Protein Pept Sci. 2011;12:75-83. https://doi.org/10.2174/138920311795684968. PMID:21348850
  • Du H, Wang Y-B, Xie Y, Liang Z, Jiang S-J, Zhang S-S, Huang Y-B, Tang Y-X. Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants. DNA Res. 2013;20:437-48. https://doi.org/10.1093/dnares/dst021. PMID:23690543
  • Nanavaty V, Sandhu R, Jehi SE, Pandya UM, Li B. Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA:DNA hybrids. Nucleic Acids Res. 2017;45:5785-96. https://doi.org/10.1093/nar/gkx184. PMID:28334836
  • Jehi SE, Li X, Sandhu R, Ye F, Benmerzouga I, Zhang M, Zhao Y, Li B. Suppression of subtelomeric VSG switching by Trypanosoma brucei TRF requires its TTAGGG repeat-binding activity. Nucleic Acids Res. 2014;42:12899-911. https://doi.org/10.1093/nar/gku942. PMID:25313155
  • Jehi SE, Wu F, Li B. Trypanosoma brucei TIF2 suppresses VSG switching by maintaining subtelomere integrity. Cell Res. 2014;24:870-85. https://doi.org/10.1038/cr.2014.60. PMID:24810301
  • Bertschi NL, Toenhake CG, Zou A, Niederwieser I, Henderson R, Moes S, Jenoe P, Parkinson J, Bartfai R, Voss TS. Malaria parasites possess a telomere repeat-binding protein that shares ancestry with transcription factor IIIA. Nat Microbiol. 2017;2:17033. https://doi.org/10.1038/nmicrobiol.2017.33. PMID:28288093
  • Vernick KD, Walliker D, McCutchan TF. Genetic hypervariability of telomere-related sequences is associated with meiosis in Plasmodium falciparum. Nucleic Acids Res. 1988;16:6973-85. https://doi.org/10.1093/nar/16.14.6973. PMID:3043376
  • Li JSZ, Miralles Fusté J, Simavorian T, Bartocci C, Tsai J, Karlseder J, Lazzerini Denchi E. TZAP: A telomere-associated protein involved in telomere length control. Science. 2017;355:638-41. https://doi.org/10.1126/science.aah6752. PMID:28082411
  • Varela E, Muñoz-Lorente MA, Tejera AM, Ortega S, Blasco MA. Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat Commun. 2016;7:11739. https://doi.org/10.1038/ncomms11739. PMID:27252083
  • Jahn A, Rane G, Paszkowski-Rogacz M, Sayols S, Bluhm A, Han C, Draškovič I, Londoño-Vallejo JA, Kumar AP, Buchholz F, et al. ZBTB48 is both a vertebrate telomere-binding protein and a transcriptional activator. EMBO Rep. 2017;18:929-46. https://doi.org/10.15252/embr.201744095. PMID:28500257
  • Gunišová S, Elboher E, Nosek J, Gorkovoy V, Brown Y, Lucier J-F, Laterreur N, Wellinger RJ, Tzfati Y, Tomáška Ľ. Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA. 2009;15:546-59. https://doi.org/10.1261/rna.1194009. PMID:19223441
  • Lue NF. Plasticity of telomere maintenance mechanisms in yeast. Trends Biochem Sci. 2010;35:8-17. https://doi.org/10.1016/j.tibs.2009.08.006. PMID:19846312
  • Shibuya H, Hernández-Hernández A, Morimoto A, Negishi L, Höög C, Watanabe Y. MAJIN links telomeric DNA to the nuclear membrane by exchanging telomere cap. Cell. 2015;163:1252-66. https://doi.org/10.1016/j.cell.2015.10.030. PMID:26548954
  • Steinberg-Neifach O, Wellington K, Vazquez L, Lue NF. Combinatorial recognition of a complex telomere repeat sequence by the ?Candida parapsilosis Cdc13AB heterodimer. Nucleic Acids Res. 2015;43:2164-76. https://doi.org/10.1093/nar/gkv092. PMID:25662607
  • Lieb JD, Liu X, Botstein D, Brown PO. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet. 2001;28:327-34. https://doi.org/10.1038/ng569. PMID:11455386
  • Piña B, Fernández-Larrea J, García-Reyero N, Idrissi F-Z. The different (sur)faces of Rap1p. Mol Genet Genomics. 2003;268:791-8. https://doi.org/10.1007/s00438-002-0801-3. PMID:12655405
  • Rhodin Edsö J, Gustafsson C, Cohn M. Single- and double-stranded DNA binding proteins act in concert to conserve a telomeric DNA core sequence. Genome Integr. 2011;2:2. https://doi.org/10.1186/2041-9414-2-2. PMID:21235754
  • Lustig AJ. Paralog formation from progenitor proteins and paralog mutagenesis spur the rapid evolution of telomere binding proteins. Front Genet. 2016;7:10. https://doi.org/10.1126/science.2237406. PMID:2237406
  • Sepšiová R, Nečasová I, Willcox S, Procházková K, Gorilák P, Nosek J, Hofr C, Griffith JD, Tomáška Ľ. Evolution of telomeres in Schizosaccharomyces pombe and its possible relationship to the diversification of telomere binding proteins. PLoS One. 2016;11:1-17. https://doi.org/10.1126/science.2237406. PMID:2237406
  • Nandakumar J, Cech TR. Finding the end: Recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol. 2013;14:69-82. https://doi.org/10.1038/nrm3505. PMID:23299958
  • Pitt CW, Valente LP, Rhodes D, Simonsson T. Identification and characterization of an essential telomeric repeat binding factor in fission yeast. J Biol Chem. 2008;283:2693-701. https://doi.org/10.1074/jbc.M708784200. PMID:17977837
  • Lue NF, Yu EY. Telomere recombination pathways: Tales of several unhappy marriages. Curr Genet. 2017;63:401-9. https://doi.org/10.1007/s00294-016-0653-8. PMID:27666406
  • Yu EY, Pérez-Martín J, Holloman WK, Lue NF. Mre11 and Blm-dependent formation of ALT-Like telomeres in Ku-deficient Ustilago maydis. PLOS Genet. 2015;11:e1005570. https://doi.org/10.1371/journal.pgen.1005570. PMID:26492073
  • Sánchez-Alonso P, Guzman P. Predicted elements of telomere organization and function in Ustilago maydis. Fungal Genet Biol. 2008;45(Suppl 1):S54-62. https://doi.org/10.1016/j.fgb.2008.04.009. PMID:18514000
  • Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life. 2011;63:528-37. https://doi.org/10.1002/iub.489. PMID:21698757
  • Jacob F. Evolution and tinkering. Science. 1977;196:1161-6. https://doi.org/10.1126/science.86013. PMID:860134
  • Casas-Vila N, Scheibe M, Freiwald A, Kappei D, Butter F. Identification of TTAGGG-binding proteins in Neurospora crassa, a fungus with vertebrate-like telomere repeats. BMC Genomics. 2015;16:965. https://doi.org/10.1186/s12864-015-2158-0. PMID:26577093
  • McEachern MJ, Blackburn EH. A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc Natl Acad Sci U S A. 1994;91:3453-7. https://doi.org/10.1073/pnas.91.8.3453. PMID:8159768
  • McEachern MJ, Hicks JB. Unusually large telomeric repeats in the yeast Candida albicans. Mol Cell Biol. 1993;13:551-60. https://doi.org/10.1128/MCB.13.1.551. PMID:8417351
  • Kinský S, Miháliková A, Kramara J, Nosek J, Tomáška Ľ. Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in Yarrowia lipolytica. Curr Genet. 2010;56:413-425. https://doi.org/10.1007/s00294-010-0310-6. PMID:20549213
  • Schechtman MG. Characterization of telomere DNA from Neurospora crassa. Gene. 1990;88:159-65. https://doi.org/10.1016/0378-1119(90)90027-O. PMID:1971801
  • Hiraoka Y, Henderson E, Blackburn EH. Not so peculiar: Fission yeast telomere repeats. Trends Biochem Sci. 1998;23:126. https://doi.org/10.1016/S0968-0004(98)01176-1. PMID:9584612
  • Guzmán PA, Sánchez JG. Characterization of telomeric regions from Ustilago maydis. Microbiology. 1994;140:551-7. https://doi.org/10.1099/00221287-140-3-551. PMID:8012578

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.