2,968
Views
13
CrossRef citations to date
0
Altmetric
Extra View

New roles for Dicer in the nucleolus and its relevance to cancer

, &
Pages 1643-1653 | Received 18 Jul 2017, Accepted 25 Jul 2017, Published online: 30 Aug 2017

References

  • McClintock B. The relation of a particular chromosomal element to the development of nucleoli in Zea mays. Zeitschrift für Zellforschung und Mikroskopische Anatomie 1934;2:294-326. doi:10.1007/BF00374060
  • Hernandez-Verdun D. Structural organization of the nucleolus as a consequence of the dynamics of ribosome biogenesis. In: Olson MOJ, editor. The nucleolus. Protein reviews 15 New York: Springer-Verlag; 2011. p. 3-28.
  • Derenzini M, Pasquinelli G, O'Donohue MF, Ploton D, Thiry M. Structural and functional organization of ribosomal genes within the mammalian cell nucleolus. J Histochem Cytochem 2006;54:131-45. doi:10.1369/jhc.5R6780.2005. PMID:16204224
  • Voit R, Grummt I. The RNA polymerase I transcription machinery. In: Olson MOJ, editor. The nucleolus. Protein reviews 15 New York: Springer-Verlag; 2011. p. 107-34.
  • Gérus M, Caizergues-Ferrer M, Henry Y, Henras A. Crosstalk between ribosome synthesis and cell cycle progression and its potential implications in human diseases. In: Olson MOJ, editor. The nucleolus. Protein reviews 15 New York: Springer-Verlag; 2011. p. 157-84.
  • Kuhn A, Grummt I. Dual role of the nucleolar transcription factor UBF: Trans-activator and antirepressor. Proc Natl Acad Sci USA 1992;89:7340-4. PMID:1502143
  • Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleid Acids Res 2001;29:3241-7. PMID:11470882
  • O'Sullivan AC, Sullivan GJ, McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 2002;22:657-68. doi:10.1128/MCB.22.2.657-668.2002. PMID:11756560
  • Wright JE, Mais C, Prieto JL, McStay B. A role for upstream binding factor in organizing ribosomal gene chromatin. Biochem Soc Symp 2006;73:77-84. doi:10.1042/bss0730077. PMID:16626289
  • Gorski JJ, Pathak S, Panov K, Kasciukovic T, Panova T, Russell J, Zomerdijk JC. A novel TBP-associated factor of SL1 functions in RNA polymerase I transcription. EMBO J 2007;26:1560-8. doi:10.1038/sj.emboj.7601601. PMID:17318177
  • Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters. EMBO J 2001;20:1373-82. doi:10.1093/emboj/20.6.1373. PMID:11250903
  • Friedrich JK, Panov KI, Cabart P, Russell J, Zomerdijk JC. TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter. J Biol Chem 2005;280:29551-8. doi:10.1074/jbc.M501595200. PMID:15970593
  • Knutson BA, Luo J, Ranish J, Hahn S. Architecture of the Saccharomyces cerevisiae RNA polymerase I core factor complex. Nat Struct Mol Biol 2014;21:810-6. doi:10.1038/nsmb.2873. PMID:25132180
  • Hontz RD, French SL, Oakes ML, Tongaonkar P, Nomura M, Beyer AL, Smith JS. Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30. Mol Cell Biol 2008;28:6709-19. doi:10.1128/MCB.00703-08. PMID:18765638
  • Längst G, Becker PB, Grummt I. TTF-I determines the chromatin architecture of the active rDNA promoter. EMBO J 1998;17:3135-45. doi:10.1093/emboj/17.11.3135. PMID:9606195
  • Diermeier SD, Németh A, Rehli M, Grummt I, Längst G. Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I-binding sites. PLoS Genet 2013;9:e1003786. doi:10.1371/journal.pgen.1003786. PMID:24068958
  • Diesch J, Hannan RD, Sanij E. Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease. Cell Biosci 2014;4:43. doi:10.1186/2045-3701-4-43. PMID:25949792
  • Panov KI, Friedrich JK, Zomerdijk JC. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol Cell Biol 2001;21:2641-9. doi:10.1128/MCB.21.8.2641-2649.2001. PMID:11283244
  • Hung SS, Lesmana A, Peck A, Lee R, Tchoubrieva E, Hannan KM, Lin J, Sheppard KE, Jastrzebski K, Quinn LM, et al. Cell cycle and growth stimuli regulate different steps of RNA polymerase I transcription. Gene 2017;612:36-48. doi:10.1016/j.gene.2016.12.015. PMID:27989772
  • Claypool JA, French SL, Johzuka K, Eliason K, Vu L, Dodd JA, Beyer AL, Nomura M. Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol Biol Cell 2004;15:946-56. doi:10.1091/mbc.E03-08-0594. PMID:14595104
  • Mayer C, Zhao J, Yuan X, Grummt I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 2004;18:423-34. doi:10.1101/gad.285504. PMID:15004009
  • Zhao J, Yuan X, Frödin M, Grummt I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol Cell 2003;11:405-13. doi:10.1016/S1097-2765(03)00036-4. PMID:12620228
  • James MJ, Zomerdijk JC. Phosphatidylinositol 3-kinase and mTOR signaling pathways regulate RNA polymerase I transcription in response to IGF-1 and nutrients. J Biol Chem 2004;279:8911-8. https//doi.org/10.1074/jbc.M307735200. PMID:14688273
  • Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS, Hung S, Astle MV, Bywater M, Wall M, et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal 2011;4:ra56. doi:10.1126/scisignal.2001754. PMID:21878679
  • Vincent T, Kukalev A, Andäng M, Pettersson R, Percipalle P. The glycogen synthase kinase (GSK) 3β represses RNA polymerase I transcription. Oncogene 2008;27:5254-9. doi:10.1038/onc.2008.152. PMID:18490923
  • Pistoni M, Verrecchia A, Doni M, Guccione E, Amati B. Chromatin association and regulation of rDNA transcription by the Ras-family protein RasL11a. EMBO J 2010;29:1215-24. doi:10.1038/emboj.2010.16. PMID:20168301
  • Kusnadi EP, Hannan KM, Hicks RJ, Hannan RD, Pearson RB, Kang J. Regulation of rDNA transcription in response to growth factors, nutrients and energy. Gene 2015;556:27-34. doi:10.1016/j.gene.2014.11.010. PMID:25447905
  • Lyapunova NA, Veiko NN, Porokhovnik LN. Human rDNA genes: Identification of four fractions, their functions and nucleolar location. In: O'Day DH, Catalano A, editors. Proteins of the Nucleolus New York: Springer-Verlag; 2013. p. 95-118.
  • Santoro R. The epigenetics of the nucleolus: Structure and function of active and silent ribosomal RNA genes. In: Olson MOJ, editor. The nucleolus. Protein reviews 15 New York: Springer-Verlag; 2011. p. 57-82.
  • Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, et al. UBF levels determine the number of active ribosomal RNA genes in mammals. J Cell Biol 2008;183:1259-74. doi:10.1083/jcb.200805146. PMID:19103806
  • Klein J, Grummt I. Cell cycle-dependent regulation of RNA polymerase I transcription: The nucleolar transcription factor UBF is inactive in mitosis and early G1. Proc Natl Acad Sci USA 1999;96:6096-101. doi:10.1073/pnas.96.11.6096. PMID:10339547
  • Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 2013;14:329-40. doi:10.1038/nrm3591. PMID:23698583
  • Yanagida M. Cellular quiescence: Are controlling genes conserved? Trends Cell Biol 2009;19:705-15. doi:10.1016/j.tcb.2009.09.006. PMID:19833516
  • Roche B, Arcangioli B, Martienssen RA. Transcriptional reprogramming in cellular quiescence. RNA Biol 2017;12:1-11. doi:10.1080/15476286.2017.1327510. PMID:28497998
  • Johnson EL, Robinson DG, Coller HA. Widespread changes in mRNA stability contribute to quiescence-specific gene expression patterns in a fibroblast model of quiescence. BMC Genomics 2017;18:123. doi:10.1186/s12864-017-3521-0. PMID:28143407
  • Roche B, Arcangioli B, Martienssen RA. RNA interference is essential for cellular quiescence. Science 2016;354:aah5651. doi:10.1126/science.aah5651. PMID:27738016
  • Shimanuki M, Chung SY, Chikashige Y, Kawasaki Y, Uehara L, Tsutsumi C, Hatanaka M, Hiraoka Y, Nagao K, Yanagida M. Two-step, extensive alterations in the transcriptome from G0 arrest to cell division in Schizosaccharomyces pombe. Genes Cells 2007;12:677-92. doi:10.1111/j.1365-2443.2007.01079.x. PMID:17535257
  • Narla A, Ebert BL. Ribosomopathies: Human disorders of ribosome dysfunction. Blood 2010;115:3196-205. doi:10.1182/blood-2009-10-178129. PMID:20194897
  • Gani R. The nucleoli of cultured human lymphocytes. I. Nucleolar morphology in relation to transformation and the DNA cycle. Exp Cell Res 1976;97:249-58. doi:10.1016/0014-4827(76)90614-5. PMID:1248517
  • Derenzini M, Trerè D. Importance of interphase nucleolar organizer regions in tumor pathology. Virchows Arch B Cell Pathol Incl Mol Pathol 1991;61:1-8. doi:10.1007/BF02890399. PMID:1683059
  • O'Farrell PH. Quiescence: Early evolutionary origins and universality do not imply uniformity. Philos Trans R Soc Lond B Biol Sci 2011;366:3498-507. doi:10.1098/rstb.2011.0079. PMID:22084377
  • Montanaro L, Treré D, Derenzini M. Nucleolus, ribosomes, and cancer. Am J Pathol 2008;173:301-10. doi:10.2353/ajpath.2008.070752. PMID:18583314
  • Montanaro L, Treré D, Derenzini M. The emerging role of RNA polymerase I transcription machinery in human malignancy: A clinical perspective. Onco Targets Ther 2013;6:909-16. doi:10.2147/OTT.S36627. PMID:23888116
  • Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB. Dysregulation of RNA polymerase I transcription during disease. Biochim Biophys Acta 2013;1829:342-60. doi:10.1016/j.bbagrm.2012.10.014. PMID:23153826
  • Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol 2016;37–38:36-50. doi:10.1016/j.semcancer.2015.12.004. PMID:26721423
  • Derenzini M, Montanaro L, Treré D. Ribosome biogenesis and cancer. Acta Histochem 2017;119:190-7. doi:10.1016/j.acthis.2017.01.009. PMID:28168996
  • Arabi A, Wu S, Ridderstråle K, Bierhoff H, Shiue C, Fatyol K, Fahlén S, Hydbring P, Söderberg O, Grummt I, et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 2005;7:303-10. doi:10.1038/ncb1225. PMID:15723053
  • Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, White RJ. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 2005;7:311-8. doi:10.1038/ncb1224. PMID:15723054
  • Kim DW, Wu N, Kim YC, Cheng PF, Basom R, Kim D, Dunn CT, Lee AY, Kim K, Lee CS, et al. Genetic requirement for Mycl and efficacy of RNA pol I inhibition in mouse models of small cell lung cancer. Genes Dev 2016;30:1289-99. doi:10.1101/gad.279307.116. PMID:27298335
  • Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 2005;7:295-302. doi:10.1038/ncb1223. PMID:15723055
  • Boon K, Caron HN, van Asperen R, Valentijn L, Hermus MC, van Sluis P, Roobeek I, Weis I, Voûte PA, Schwab M, et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J 2001;20:1383-93. doi:10.1093/emboj/20.6.1383. PMID:11250904
  • Felton-Edkins ZA, Kenneth NS, Brown TR, Daly NL, Gomez-Roman N, Grandori C, Eisenman RN, White RJ. Direct regulation of RNA polymerase III transcription by RB, p53 and c-Myc. Cell Cycle 2003;2:181-4. doi:10.4161/cc.2.3.375. PMID:12734418
  • Gomez-Roman N, Grandori C, Eisenman RN, White RJ. Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003;421:290-4. doi:10.1038/nature01327. PMID:12529648
  • Scott DD, Oeffinger M. Nucleolin and nucleophosmin: Nucleolar proteins with multiple functions in DNA repair. Biochem Cell Biol 2016;94:419-32. doi:10.1139/bcb-2016-0068. PMID:27673355
  • Li Z, Boone D, Hann SR. Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proc Natl Acad Sci USA 2008;105:18794-9. doi:10.1073/pnas.0806879105. PMID:19033198
  • Li Z, Hann SR. Nucleophosmin is essential for c-Myc nucleolar localization and c-Myc-mediated rDNA transcription. Oncogene 2013;32:1988-94. doi:10.1038/onc.2012.227. PMID:22665062
  • Ayrault O, Andrigue L, Larsen CJ, Seite P. Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes. Oncogene 2004;23:8097-104. doi:10.1038/sj.onc.1207968. PMID:15361825
  • Ayrault O, Andrigue L, Fauvin C, Eymin B, Gazzeri S, Séité P. Human tumor suppressor p14ARF negatively regulates rRNA transcription and inhibits UBF1 transcription factor phosphorylation. Oncogene 2006;25:7577-86. doi:10.1038/sj.onc.1209743. PMID:16924243
  • Lessard F, Morin F, Ivanchuk S, Langlois F, Stefanovsky V, Rutka J, Moss T. The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. Mol Cell 2010;38:539-50. doi:10.1016/j.molcel.2010.03.015. PMID:20513429
  • Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G, Rothblum LI. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 1995;374:177-80. doi:10.1038/374177a0. PMID:7877691
  • Hannan KM, Hannan RD, Smith SD, Jefferson LS, Lun M, Rothblum LI. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene 2000;19:4988-99. doi:10.1038/sj.onc.1203875. PMID:11042686
  • Ciarmatori S, Scott PH, Sutcliffe JE, McLees A, Alzuherri HM, Dannenberg JH, te Riele H, Grummt I, Voit R, White RJ. Overlapping functions of the pRb family in the regulation of rRNA synthesis. Mol Cell Biol 2001;21:5806-14. doi:10.1128/MCB.21.17.5806-5814.2001. PMID:11486020
  • Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 2003;22:6068-77. doi:10.1093/emboj/cdg579. PMID:14609953
  • Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, Itoh B, Wang J, Komatsu Y, Yang YR, et al. Regulation of the MDM2-p53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011;17:944-51. doi:10.1038/nm.2392. PMID:21804542
  • Karni-Schmidt O, Zupnick A, Castillo M, Ahmed A, Matos T, Bouvet P, Cordon-Cardo C, Prives C. p53 is localized to a sub-nucleolar compartment after proteasomal inhibition in an energy-dependent manner. J Cell Sci 2008;121:4098-105. doi:10.1242/jcs.030098. PMID:19033390
  • Budde A, Grummt I. p53 represses ribosomal gene transcription. Oncogene 1999;18:1119-24. doi:10.1038/sj.onc.1202402. PMID:10023689
  • Zhai W, Comai L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 2000;20:5930-8. doi:10.1128/MCB.20.16.5930-5938.2000. PMID:10913176
  • Ho JS, Ma W, Mao DY, Benchimol S. p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 2005;25:7423-31. doi:10.1128/MCB.25.17.7423-7431.2005. PMID:16107691
  • Liao JM, Zhou X, Gatignol A, Lu H. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex. Oncogene 2014;33:4916-23. doi:10.1038/onc.2013.430. PMID:24141778
  • Chen H, Han L, Tsai H, Wang Z, Wu Y, Duo Y, Cao W, Chen L, Tan Z, Xu N, et al. PICT-1 is a key nucleolar sensor in DNA damage response signaling that regulates apoptosis through the RPL11-MDM2-p53 pathway. Oncotarget 2016;7:83241-57. doi:10.18632/oncotarget.13082. PMID:27829214
  • Chen H, Duo Y, Hu B, Wang Z, Zhang F, Tsai H, Zhang J, Zhou L, Wang L, Wang X, et al. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway. Oncotarget 2016;7:78747-63. doi:10.18632/oncotarget.12288. PMID:27729611
  • Zhang C, Comai L, Johnson DL. PTEN represses RNA polymerase I transcription by disrupting the SL1 complex. Mol Cell Biol 2005;25:6899-911. doi:10.1128/MCB.25.16.6899-6911.2005. PMID:16055704
  • Liang H, Chen X, Yin Q, Ruan D, Zhao X, Zhang C, McNutt MA, Yin Y. PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat Commun 2017;8:14771. doi:10.1038/ncomms14771. PMID:28332494
  • Johnston R, D'Costa Z, Ray S, Gorski J, Harkin DP, Mullan P, Panov KI. The identification of a novel role for BRCA1 in regulating RNA polymerase I transcription. Oncotarget 2016;7:68097-110. doi:10.18632/oncotarget.11770. PMID:27589844
  • Fiorentino FP, Giordano A. The tumor suppressor role of CTCF. J Cell Physiol 2012;227:479-92. doi:10.1002/jcp.22780. PMID:21465478
  • van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L, Jonkers I, Demmers J, van der Reijden M, Torrano V, et al. CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics Chromatin 2010;3:19. doi:10.1186/1756-8935-3-19. PMID:21059229
  • Huang K, Jia J, Wu C, Yao M, Li M, Jin J, Jiang C, Cai Y, Pei D, Pan G, et al. Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 2013;288:26067-77. doi:10.1074/jbc.M113.486175. PMID:23884423
  • Guerrero PA, Maggert KA. The CCCTC-binding factor (CTCF) of Drosophila contributes to the regulation of the ribosomal DNA and nucleolar stability. PLoS One 2011;6:e16401. doi:10.1371/journal.pone.0016401. PMID:21283722
  • Drygin D, Rice WG, Grummt I. The RNA polymerase I transcription machinery: An emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 2010;50:131-56. doi:10.1146/annurev.pharmtox.010909.105844. PMID:20055700
  • Drygin D, Siddiqui-Jain A, O'Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, et al. Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis. Cancer Res 2009;69:7653-61. doi:10.1158/0008-5472.CAN-09-1304. PMID:19738048
  • Drygin D, Lin A, Bliesath J, Ho CB, O'Brien SE, Proffitt C, Omori M, Haddach M, Schwaebe MK, Siddiqui-Jain A, et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 2011;71:1418-30. doi:10.1158/0008-5472.CAN-10-1728. PMID:21159662
  • González V, Hurley LH. The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry 2010;49:9706-14. doi:10.1021/bi100509s. PMID:20932061
  • Brooks TA, Hurley LH. Targeting MYC expression through G-quadruplexes. Genes Cancer 2010;1:641-9. doi:10.1177/1947601910377493. PMID:21113409
  • Lee HC, Wang H, Baladandayuthapani V, Lin H, He J, Jones RJ, Gu D, Wang Z, Ma W, Lim J, et al. RNA polymerase I inhibition with CX-5461 as a novel therapeutic strategy to target MYC in multiple myeloma. Br J Haematol 2017;177:80-94. doi:10.1111/bjh.14525. PMID:28369725
  • Kim DW, Wu N, Kim YC, Cheng PF, Basom R, Kim D, Dunn CT, Lee AY, Kim K, Lee CS, et al. Genetic requirement for Mycl and efficacy of RNA pol I inhibition in mouse models of small cell lung cancer. Genes Dev 2016;30:1289-99. doi:10.1101/gad.279307.116. PMID:27298335
  • Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O'Neil NJ, Santos ND, Silvester J, Wei V, Garcia J, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun 2017;8:14432. doi:10.1038/ncomms14432. PMID:28211448
  • Peltonen K, Colis L, Liu H, Jäämaa S, Moore HM, Enbäck J, Laakkonen P, Vaahtokari A, Jones RJ, Af Hällström TM, et al. Identification of novel p53 pathway activating small-molecule compounds reveals unexpected similarities with known therapeutic agents. PLoS One 2010;5:e12996. doi:10.1371/journal.pone.0012996. PMID:20885994
  • Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS, Moore HM, Bai B, Rudek MA, Bieberich CJ, Laiho M. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 2014;25:77-90. doi:10.1016/j.ccr.2013.12.009. PMID:24434211
  • Peltonen K, Colis L, Liu H, Jäämaa S, Zhang Z, Af Hällström T, Moore HM, Sirajuddin P, Laiho M. Small molecule BMH-compounds that inhibit RNA polymerase I and cause nucleolar stress. Mol Cancer Ther 2014;13:2537-46. doi:10.1158/1535-7163.MCT-14-0256. PMID:25277384
  • Goudarzi KM, Nistér M, Lindström MS. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther 2014;15:1499-514. doi:10.4161/15384047.2014.955743. PMID:25482947
  • Rebello RJ, Kusdani E, Cameron DP, Pearson HB, Lesmana A, Devlin JR, Drygin D, Clark AK, Porter L, Pedersen J, et al. The dual inhibition of RNA pol I transcription and PIM kinase as a new therapeutic approach to treat advanced prostate cancer. Clin Cancer Res 2016;22:5539-52. doi:10.1158/1078-0432.CCR-16-0124. PMID:27486174
  • Quin J, Chan KT, Devlin JR, Cameron DP, Diesch J, Cullinane C, Ahern J, Khot A, Hein N, George AJ, et al. Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling. Oncotarget 2016;7:49800-18. doi:10.18632/oncotarget.10452. PMID:27391441
  • Castel SE, Martienssen RA. RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013;14:100-12. doi:10.1038/nrg3355. PMID:23329111
  • Zaratiegui M, Castel SE, Irvine DV, Kloc A, Ren J, Li F, de Castro E, Marín L, Chang AY, Goto D, et al. RNAi promotes heterochromatic silencing through replication-coupled release of RNA pol II. Nature 2011;479:135-8. doi:10.1038/nature10501. PMID:22002604
  • Castel SE, Ren J, Bhattacharjee S, Chang AY, Sánchez M, Valbuena A, Antequera F, Martienssen RA. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 2014;159:572-83. doi:10.1016/j.cell.2014.09.031. PMID:25417108
  • Reyes-Turcu FE, Zhang K, Zofall M, Chen E, Grewal SI. Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 2011;18:1132-8. doi:10.1038/nsmb.2122. PMID:21892171
  • Sinkkonen L, Hugenschmidt T, Filipowicz W, Svoboda P. Dicer is associated with ribosomal DNA chromatin in mammalian cells. PLoS One 2010;5:e12175. doi:10.1371/journal.pone.0012175. PMID:20730047
  • Atwood BL, Woolnough JL, Lefevre GM, Saint Just Ribeiro M, Felsenfeld G, Giles KE. Human Argonaute 2 is tethered to ribosomal RNA through microRNA interactions. J Biol Chem 2016;291:17919-28. doi:10.1074/jbc.M116.725051. PMID:27288410
  • Liang XH, Crooke ST. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing. Nucleid Acids Res 2011;39:4875-89. doi:10.1093/nar/gkr076. PMID:21321021
  • Zhang PY, Li G, Deng ZJ, Liu LY, Chen L, Tang JZ, Wang YQ, Cao ST, Fang YX, Wen F, et al. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res 2016;44:3629-42. doi:10.1093/nar/gkv1504. PMID:26704979
  • Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics 2012;11:60-76. doi:10.1074/mcp.A111.015156. PMID:22586326
  • Peng JC, Karpen GH. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 2007;9:25-35. doi:10.1038/ncb1514. PMID:17159999
  • Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW, Lagrange T, Pikaard CS, Jacobsen SE. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 2006;126:93-106. doi:10.1016/j.cell.2006.05.032. PMID:16839879
  • Pontes O, Li CF, Costa Nunes P, Haag J, Ream T, Vitins A, Jacobsen SE, Pikaard CS. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 2006;126:79-92. doi:10.1016/j.cell.2006.05.031. PMID:16839878
  • Bernstein DA, Vyas VK, Weinberg DE, Drinnenberg IA, Bartel DP, Fink GR. Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc Natl Acad Sci USA 2012;109:523-8. doi:10.1073/pnas.1118859109. PMID:22173636
  • Kufel J, Dichtl B, Tollervey D. Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3′ETS but not the 5′ETS. RNA 1999;5:909-17. doi:10.1017/S135583829999026X. PMID:10411134
  • Cai S, Zhao W, Nie X, Abbas A, Fu L, Bihi S, Feng G, Liu T, Lv Y, Ma X, et al. Multimorbidity and genetic characteristics of DICER1 syndrome based on systematic review. J Pediatr Hematol Oncol 2017;39:355-61. doi:10.1097/MPH.0000000000000715. PMID:27906793
  • Fernández-Martinez L, Villegas JA, Santamaría I, Pitiot AS, Alvarado MG, Fernández S, Torres H, Paredes Á, Blay P, Balbín M. Identification of somatic and germ-line DICER1 mutations in pleuropulmonary blastoma, cystic nephroma and rhabdomyosarcoma tumors within a DICER1 syndrome pedigree. BMC Cancer 2017;17:146. doi:10.1186/s12885-017-3136-5. PMID:28222777
  • Rossing M, Gerdes AM, Juul A, Rechnitzer C, Rudnicki M, Nielsen FC, Vo Hansen T. A novel DICER1 mutation identified in a female with ovarian Sertoli-Leydig cell tumor and multinodular goiter: A case report. J Med Case Rep 2014;8:112. doi:10.1186/1752-1947-8-112. PMID:24708902
  • Durieux E, Descotes F, Nguyen AM, Grange JD, Devouassoux-Shisheboran M. Somatic DICER1 gene mutation in sporadic intraocular medulloepithelioma without pleuropulmonary blastoma syndrome. Hum Pathol 2015;46:783-7. doi:10.1016/j.humpath.2015.01.020. PMID:25791583
  • Durieux E, Descotes F, Mauduit C, Decaussin M, Guyetant S, Devouassoux-Shisheboran M. The co-occurrence of an ovarian Sertoli-Leydig cell tumor with a thyroid carcinoma is highly suggestive of a DICER1 syndrome. Virchows Arch 2016;468:631-6. doi:10.1007/s00428-016-1922-0. PMID:26983701
  • Rutter MM, Jha P, Schultz KA, Sheil A, Harris AK, Bauer AJ, Field AL, Geller J, Hill DA. DICER1 mutations and differentiated thyroid carcinoma: Evidence of a direct association. J Clin Endocrinol Metab 2016;101:1-5. doi:10.1210/jc.2015-2169. PMID:26555935
  • Fremerey J, Balzer S, Brozou T, Schaper J, Borkhardt A, Kuhlen M. Embryonal rhabdomyosarcoma in a patient with a heterozygous frameshift variant in the DICER1 gene and additional manifestations of the DICER1 syndrome. Fam Cancer 2017;16:401-5. doi:10.1007/s10689-016-9958-5. PMID:27896549
  • Conlon N, Schultheis AM, Piscuoglio S, Silva A, Guerra E, Tornos C, Reuter VE, Soslow RA, Young RH, Oliva E, et al. A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Mod Pathol 2015;28:1603-12. doi:10.1038/modpathol.2015.115. PMID:26428316
  • Heravi-Moussavi A, Anglesio MS, Cheng SW, Senz J, Yang W, Prentice L, Fejes AP, Chow C, Tone A, Kalloger SE, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med 2012;366:234-42. doi:10.1056/NEJMoa1102903. PMID:22187960
  • Bahubeshi A, Bal N, Rio Frio T, Hamel N, Pouchet C, Yilmaz A, Bouron-Dal Soglio D, Williams GM, Tischkowitz M, Priest JR, et al. Germline DICER1 mutations and familial cystic nephroma. J Med Genet 2010;47:863-6. doi:10.1136/jmg.2010.081216. PMID:21036787
  • Palculict TB, Ruteshouser EC, Fan Y, Wang W, Strong L, Huff V. Identification of germline DICER1 mutations and loss of heterozygosity in familial Wilms tumour. J Med Genet 2016;53:385-8. doi:10.1136/jmedgenet-2015-103311. PMID:26566882
  • Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, Jarzembowski JA, Wikenheiser-Brokamp KA, Suarez BK, Whelan AJ, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 2009;325:965. doi:10.1126/science.1174334. PMID:19556464
  • Doros LA, Rossi CT, Yang J, Field A, Williams GM, Messinger Y, Cajaiba MM, Perlman EJ, A Schultz K, Cathro HP, et al. DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma. Mod Pathol 2014;27:1267-80. doi:10.1038/modpathol.2013.242. PMID:24481001
  • Foulkes WD, Bahubeshi A, Hamel N, Pasini B, Asioli S, Baynam G, Choong CS, Charles A, Frieder RP, Dishop MK, et al. Extending the phenotypes associated with DICER1 mutations. Hum Mutat 2011;32:1381-4. doi:10.1002/humu.21600. PMID:21882293
  • Khan NE, Bauer AJ, Schultz KAP, Doros L, Decastro RM, Ling A, Lodish MB, Harney LA, Kase RG, Carr AG, et al. Quantification of thyroid cancer and multinodular goiter risk in the DICER1 syndrome: A family-based cohort study. J Clin Endocrinol Metab 2017;102:1614-22. doi:10.1210/jc.2016-2954. PMID:28323992
  • Rio Frio T, Bahubeshi A, Kanellopoulou C, Hamel N, Niedziela M, Sabbaghian N, Pouchet C, Gilbert L, O'Brien PK, Serfas K, et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 2011;305:68-77. doi:10.1001/jama.2010.1910. PMID:21205968
  • de Kock L, Sabbaghian N, Druker H, Weber E, Hamel N, Miller S, Choong CS, Gottardo NG, Kees UR, Rednam SP, et al. Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathol 2014;128:583-95. doi:10.1007/s00401-014-1318-7. PMID:25022261
  • Sahm F, Jakobiec FA, Meyer J, Schrimpf D, Eberhart CG, Hovestadt V, Capper D, Lambo S, Ryzhova M, Schüller U, et al. Somatic mutations of DICER1 and KMT2D are frequent in intraocular medulloepitheliomas. Genes Chromosomes Cancer 2016;55:418-27. doi:10.1002/gcc.22344. PMID:26841698
  • Wu MK, Sabbaghian N, Xu B, Addidou-Kalucki S, Bernard C, Zou D, Reeve AE, Eccles MR, Cole C, Choong CS, et al. Biallelic DICER1 mutations occur in Wilms tumours. J Pathol 2013;230:154-64. doi:10.1002/path.4196. PMID:23620094
  • Seki M, Yoshida K, Shiraishi Y, Shimamura T, Sato Y, Nishimura R, Okuno Y, Chiba K, Tanaka H, Kato K, et al. Biallelic DICER1 mutations in sporadic pleuropulmonary blastoma. Cancer Res 2014;74:2742-9. doi:10.1158/0008-5472.CAN-13-2470. PMID:24675358
  • Wang Y, Chen J, Yang W, Mo F, Senz J, Yap D, Anglesio MS, Gilks B, Morin GB, Huntsman DG. The oncogenic roles of DICER1 RNase IIIb domain mutations in ovarian Sertoli-Leydig cell tumors. Neoplasia 2015;17:650-60. doi:10.1016/j.neo.2015.08.003. PMID:26408257
  • Brenneman M, Field A, Yang J, Williams G, Doros L, Rossi C, Schultz KA, Rosenberg A, Ivanovich J, Turner J, et al. Temporal order of RNase IIIb and loss-of-function mutations during development determines phenotype in DICER1 syndrome: A unique variant of the two-hit tumor suppression model. F1000Res 2015;4:214. doi:10.12688/f1000research.6746.1. PMID:26925222
  • Witkowski L, Mattina J, Schönberger S, Murray MJ, Choong CS, Huntsman DG, Reis-Filho JS, McCluggage WG, Nicholson JC, Coleman N, et al. DICER1 hotspot mutations in non-epithelial gonadal tumours. Br J Cancer 2013;109:2744-50. doi:10.1038/bjc.2013.637. PMID:24136150
  • Messinger YH, Stewart DR, Priest JR, Williams GM, Harris AK, Schultz KA, Yang J, Doros L, Rosenberg PS, Hill DA, et al. Pleuropulmonary blastoma: A report on 350 central pathology-confirmed pleuropulmonary blastoma cases by the International Pleuropulmonary Blastoma Registry. Cancer 2015;121:276-85. doi:10.1002/cncr.29032. PMID:25209242
  • Pugh TJ, Yu W, Yang J, Field AL, Ambrogio L, Carter SL, Cibulskis K, Giannikopoulos P, Kiezun A, Kim J, et al. Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene 2014;33:5295-302. doi:10.1038/onc.2014.150. PMID:24909177
  • Rakheja D, Chen KS, Liu Y, Shukla AA, Schmid V, Chang TC, Khokhar S, Wickiser JE, Karandikar NJ, Malter JS, et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2014;2:4802. doi:10.1038/ncomms5802. PMID:25190313
  • Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL, Lawrence JB, Imbalzano AN, Jones SN. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 2008;181:1055-63. doi:10.1083/jcb.200802105. PMID:18591425
  • Lyle S, Hoover K, Colpan C, Zhu Z, Matijasevic Z, Jones SN. Dicer cooperates with p53 to suppress DNA damage and skin carcinogenesis in mice. PLoS One 2014;9:e100920. doi:10.1371/journal.pone.0100920. PMID:24979267
  • Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin YL, Leung ML, El-Naggar A, Creighton CJ, Suraokar MB, et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 2010;467:986-90. doi:10.1038/nature09459. PMID:20962848
  • Pastorelli LM, Wells S, Fray M, Smith A, Hough T, Harfe BD, McManus MT, Smith L, Woolf AS, Cheeseman M, et al. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome 2009;20:140-51. doi:10.1007/s00335-008-9169-y. PMID:19169742
  • Wagh PK, Gardner MA, Ma X, Callahan M, Shannon JM, Wert SE, Messinger YH, Dehner LP, Hill DA, Wikenheiser-Brokamp KA. Cell- and developmental stage-specific Dicer1 ablation in the lung epithelium models cystic pleuropulmonary blastoma. J Pathol 2015;236:41-52. doi:10.1002/path.4500. PMID:25500911
  • Lambertz I, Nittner D, Mestdagh P, Denecker G, Vandesompele J, Dyer MA, Marine JC. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ 2010;17:633-41. doi:10.1038/cdd.2009.202. PMID:20019750
  • Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, Kirsch DG, Golub TR, Jacks T. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009;23:2700-4. doi:10.1101/gad.1848209. PMID:19903759
  • Arrate MP, Vincent T, Odvody J, Kar R, Jones SN, Eischen CM. MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival. Cancer Res 2010;70:6083-92. doi:10.1158/0008-5472.CAN-09-4736. PMID:20587524
  • Yoshikawa T, Otsuka M, Kishikawa T, Takata A, Ohno M, Shibata C, Kang YJ, Yoshida H, Koike K. Unique haploinsufficient role of the microRNA-processing molecule Dicer1 in a murine colitis-associated tumorigenesis model. PLoS One 2013;8:e71969. doi:10.1371/journal.pone.0071969. PMID:24023722
  • Morita S, Hara A, Kojima I, Horii T, Kimura M, Kitamura M, Ochiya T, Nakanishi K, Matoba R, Matsubara K, et al. Dicer is required for maintaining adult pancreas. PLoS One 2009;4:e4212. doi:10.1371/journal.pone.0004212. PMID:19148298
  • Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X. Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA 2006;103:2208-13. doi:10.1073/pnas.0510839103. PMID:16452165
  • Kim GJ, Georg I, Scherthan H, Merkenschlager M, Guillou F, Scherer G, Barrionuevo F. Dicer is required for Sertoli cell function and survival. Int J Dev Biol 2010;54:867-75. doi:10.1387/ijdb.092874gk. PMID:19876815
  • Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N. Dicer is required for haploid male germ cell differentiation in mice. PLoS One 2011;6:e24821. doi:10.1371/journal.pone.0024821. PMID:21949761
  • Buza-Vidas N, Cismasiu VB, Moore S, Mead AJ, Woll PS, Lutteropp M, Melchiori L, Luc S, Bouriez-Jones T, Atkinson D, et al. Dicer is selectively important for the earliest stages of erythroid development. Blood 2012;120:2412-6. doi:10.1182/blood-2011-10-383653. PMID:22869792
  • Li Z, He X, Feng J. Dicer is essential for neuronal polarity. Int J Dev Neurosci 2012;30:607-11. doi:10.1016/j.ijdevneu.2012.08.002. PMID:22982054
  • Swahari V, Nakamura A, Baran-Gale J, Garcia I, Crowther AJ, Sons R, Gershon TR, Hammond S, Sethupathy P, Deshmukh M. Essential function of Dicer in resolving DNA damage in the rapidly dividing cells of the developing and malignant cerebellum. Cell Rep 2016;14:216-24. doi:10.1016/j.celrep.2015.12.037. PMID:26748703
  • Xu S, Guo K, Zeng Q, Huo J, Lam KP. The RNase III enzyme Dicer is essential for germinal center B-cell formation. Blood 2012;119:767-76. doi:10.1182/blood-2011-05-355412. PMID:22117047
  • Liu HC, Tang Y, He Z, Rosenwaks Z. Dicer is a key player in oocyte maturation. J Assist Reprod Genet 2010;27:571-80. doi:10.1007/s10815-010-9456-x. PMID:20827505
  • Gurtan AM, Lu V, Bhutkar A, Sharp PA. In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA 2012;18:1116-22. doi:10.1261/rna.032680.112. PMID:22546613
  • Anglesio MS, Wang Y, Yang W, Senz J, Wan A, Heravi-Moussavi A, Salamanca C, Maines-Bandiera S, Huntsman DG, Morin GB. Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse-strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J Pathol 2013;229:400-9. doi:10.1002/path.4135. PMID:23132766
  • Ohishi K, Nakano T. A forward genetic screen to study mammalian RNA interference: Essential role of RNase IIIa domain of Dicer1 in 3′ strand cleavage of dsRNA in vivo. FEBS J 2012;279:832-43. doi:10.1111/j.1742-4658.2012.08474.x. PMID:22221880
  • Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 pathway in cancer. Front Genet 2017;8:31. doi:10.3389/fgene.2017.00031. PMID:28400788
  • Wang XJ, Jiang FZ, Tong H, Ke JQ, Li YR, Zhang HL, Yan XF, Wang FY, Wan XP. Dicer1 dysfunction promotes stemness and agression in endometrial carcinoma. Tumour Biol 2017;39:1010428317695967. doi:10.1177/1010428317695967. PMID:28381177
  • Yi YH, Ma TH, Lee LW, Chiou PT, Chen PH, Lee CM, Chu YD, Yu H, Hsiung KC, Tsai YT, et al. A genetic cascade of let-7-ncl-1-fib-1 modulates nucleolar size and rRNA pool in Caenorhabditis elegans. PLoS Genet 2015;11:e1005580. doi:10.1371/journal.pgen.1005580. PMID:26492166
  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 2008;22:2773-85. doi:10.1101/gad.1705308. PMID:18923076
  • Johanson TM, Lew AM, Chong MM. MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol 2013;3:130144. doi:10.1098/rsob.130144. PMID:24153005
  • Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009;15:2147-60. doi:10.1261/rna.1738409. PMID:19850906
  • Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G. A human snoRNA with miRNA-like functions. Mol Cell 2008;32:519-28. doi:10.1016/j.molcel.2008.10.017. PMID:19026782
  • Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS. Small RNAs derived from snoRNAs. RNA 2009;15:1233-40. doi:10.1261/rna.1528909. PMID:19474147
  • Ren YF, Li G, Wu J, Xue YF, Song YJ, Lv L, Zhang XJ, Tang KF. Dicer-dependent biogenesis of small RNAs derived from 7SL RNA. PLoS One 2012;7:e40705. doi:10.1371/journal.pone.0040705. PMID:22808238
  • Ren YF, Li G, Xue YF, Zhang XJ, Song YJ, Lv L, Wu J, Fang YX, Wang YQ, Shi KQ, et al. Decreased dicer expression enhances SRP-mediated protein targeting. PLoS One 2013;8:e56950. doi:10.1371/journal.pone.0056950. PMID:23468895
  • Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, Mione M, Carninci P, d'Adda di Fagagna F. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 2012;488:231-5. doi:10.1038/nature11179. PMID:22722852
  • Francia S, Cabrini M, Matti V, Oldani A, d'Adda di Fagagna F. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors. J Cell Sci 2016;129:1468-76. doi:10.1242/jcs.182188. PMID:26906421
  • Yuan S, Ortogero N, Wu Q, Zheng H, Yan W. Murine follicular development requires oocyte DICER, but not DROSHA. Biol Reprod 2014;91:39. doi:10.1095/biolreprod.114.119370. PMID:24990804
  • Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA 2016;113:E1881-9. doi:10.1073/pnas.1602532113. PMID:26976605
  • Yoshikawa M, Fujii YR. Human ribosomal RNA-derived resident microRNAs as the transmitter of information upon the cytoplasmic cancer stress. Biomed Res Int 2016;2016:7562085. doi:10.1155/2016/7562085. PMID:27517048
  • Bai B, Liu H, Laiho M. Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Biol 2014;4:441-9. doi:10.1016/j.fob.2014.04.010. PMID:24918059
  • Ono M, Scott MS, Yamada K, Avolio F, Barton GJ, Lamond AI. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleid Acids Res 2011;39:3879-91. doi:10.1093/nar/gkq1355. PMID:21247878
  • Srivas R, Shen JP, Yang CC, Sun SM, Li J, Gross AM, Jensen J, Licon K, Bojorquez-Gomez A, Klepper K, et al. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Mol Cell 2016;63:514-25. doi:10.1016/j.molcel.2016.06.022. PMID:27453043
  • Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E, Tzou A, Philip R, et al. FDA approval summary: Olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 2015;21:4257-61. doi:10.1158/1078-0432.CCR-15-0887. PMID:26187614
  • Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park HO, Hayles J, et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 2008;322:405-10. doi:10.1126/science.1162609. PMID:18818364
  • Pouliot LM, Shen DW, Suzuki T, Hall MD, Gottesman MM. Contributions of microRNA dysregulation to cisplatin resistance in adenocarcinoma cells. Exp Cell Res 2013;319:566-74. doi:10.1016/j.yexcr.2012.10.012. PMID:23137650
  • Andrews WJ, Panova T, Normand C, Gadal O, Tikhonova IG, Panov KI. Old drug, new target: Ellipticines selectively inhibit RNA polymerase I transcription. J Biol Chem 2013;288:4567-82. doi:10.1074/jbc.M112.411611. PMID:23293027
  • Gerber JK, Gögel E, Berger C, Wallisch M, Müller F, Grummt I, Grummt F. Termination of mammalian rDNA replication: Polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 1997;90:559-67. doi:10.1016/S0092-8674(00)80515-2. PMID:9267035
  • Sánchez-Gorostiaga A, López-Estraño C, Krimer DB, Schvartzman JB, Hernández P. Transcription termination factor reb1p causes two replication fork barriers at its cognate sites in fission yeast ribosomal DNA in vivo. Mol Cell Biol 2004;24:398-406. doi:10.1128/MCB.24.1.398-406.2004. PMID:14673172
  • Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007;7:834-46. doi:10.1038/nrc2256. PMID:17957189