1,326
Views
8
CrossRef citations to date
0
Altmetric
Reports

Protease dead separase inhibits chromosome segregation and RAB-11 vesicle trafficking

& ORCID Icon
Pages 1902-1917 | Received 10 May 2017, Accepted 30 Jul 2017, Published online: 08 Sep 2017

References

  • Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE. Sister Chromatid Cohesion: A Simple Concept with a Complex Reality. Annu Rev Dev Biol. 2008;24:105-29. doi:10.1146/annurev.cellbio.24.110707.175350. PMID:18616427
  • Hauf S, Waizenegger IC, Peters JM. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 2001;293:1320-3. doi:10.1126/science.1061376. PMID:11509732
  • Boland A, Martin TG, Zhang ZG, Yang J, Bai XC, Chang LF, Scheres SHW, Barford D. Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution. Nat Struc Mol Biol. 2017;24:414-+. doi:10.1038/nsmb.3386
  • Lin Z, Luo X, Yu H. Structural basis of cohesin cleavage by separase. Nature. 2016;532:131-4. doi:10.1038/nature17402. PMID:27027290
  • Luo S, Tong L. Molecular mechanism for the regulation of yeast separase by securin. Nature. 2017;542:255-59. doi:10.1038/nature21061. PMID:28146474
  • Viadiu H, Stemmann O, Kirschner MW, Walz T. Domain structure of separase and its binding to securin as determined by EM. Nat Struct Mol Biol. 2005;12:552-3. doi:10.1038/nsmb935
  • Winter A, Schmid R, Bayliss R. Structural Insights into Separase Architecture and Substrate Recognition through Computational Modelling of Caspase-Like and Death Domains. Plos Comput Biol. 2015;11:1-20. doi:10.1371/journal.pcbi.1004548. PMID:26513470.
  • Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 2000;103:375-86. doi:10.1016/S0092-8674(00)00130-6. PMID:11081625
  • Sullivan M, Hornig NC, Porstmann T, Uhlmann F. Studies on substrate recognition by the budding yeast separase. J Biol Chem. 2004;279:1191-6. doi:10.1074/jbc.M309761200. PMID:14585836
  • Sullivan M, Lehane C, Uhlmann F. Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19. Nat Cell Biol. 2001;3:771-7. doi:10.1038/ncb0901-771. PMID:11533655
  • Lee K, Rhee K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle. 2012;11:2476-85. doi:10.4161/cc.20878. PMID:22722493
  • Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M. Kendrin Is a Novel Substrate for Separase Involved in the Licensing of Centriole Duplication. Curr Biol. 2012;22:915-21. doi:10.1016/j.cub.2012.03.048. PMID:22542101
  • Waizenegger IC, Gimenez-Abian JF, Wernic D, Peters JM. Regulation of human separase by securin binding and autocleavage. Curr Biol. 2002;12:1368-78. doi:10.1016/S0960-9822(02)01073-4. PMID:12194817
  • Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW. Dual inhibition of sister chromatid separation at metaphase. Cell. 2001;107:715-26. doi:10.1016/S0092-8674(01)00603-1. PMID:11747808
  • Zou H, Stemmann O, Anderson JS, Mann M, Kirschner MW. Anaphase specific auto-cleavage of separase (vol 528, pg 246, 2002). Febs Lett. 2002;531:381-381. doi:10.1016/S0014-5793(02)03547-0
  • Holland AJ, Bottger F, Stemmann O, Taylor SS. Protein phosphatase 2A and separase form a complex regulated by separase autocleavage. J Biol Chem. 2007;282:24623-32. doi:10.1074/jbc.M702545200. PMID:17604273
  • Papi M, Berdougo E, Randall CL, Ganguly S, Jallepalli PV. Multiple roles for separase auto-cleavage during the G2/M transition. Nat Cell Biol. 2005;7:1029-U144. doi:10.1038/ncb1303. PMID:16138084
  • Stegmeier F, Visintin R, Amon A. Separase, polo kinase, the kinetochore protein Slk19 and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell. 2002;108:207-20. doi:10.1016/S0092-8674(02)00618-9. PMID:11832211
  • Sullivan M, Uhlmann F. A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nat Cell Biol. 2003;5:249-54. doi:10.1038/ncb940. PMID:12598903
  • Chin CF, Bennett AM, Ma WK, Hall MC, Yeong FM. Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell. 2012;23:45-58. doi:10.1091/mbc.E11-05-0434. PMID:22072794
  • Jakobsen MK, Cheng ZL, Lam SK, Roth-Johnson E, Barfield RM, Schekman R. Phosphorylation of Chs2p regulates interaction with COPII. J Cell Sci. 2013;126:2151-56. doi:10.1242/jcs.115915. PMID:23525003
  • Palani S, Meitinger F, Boehm ME, Lehmann WD, Pereira G. Cdc14-dependent dephosphorylation of Inn1 contributes to Inn1-Cyk3 complex formation. J Cell Sci. 2012;125:3091-96. doi:10.1242/jcs.106021. PMID:22454527
  • Miller DP, Hall H, Chaparian R, Mara M, Mueller A, Hall MC, Shannon KB. Dephosphorylation of Iqg1 by Cdc14 regulates cytokinesis in budding yeast. Mol Biol Cell. 2015;26:2913-26. doi:10.1091/mbc.E14-12-1637. PMID:26085509
  • Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F. Identification of Cdk targets that control cytokinesis. Embo J. 2015;34:81-96. doi:10.15252/embj.201488958. PMID:25371407
  • Gorr IH, Boos D, Stemmann O. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mole Cell. 2005;19:135-41. doi:10.1016/j.molcel.2005.05.022. PMID:15989971
  • Gorr IH, Reis A, Boos D, Wuhr M, Madgwick S, Jones KT, Stemmann O. Essential CDK1-inhibitory role for separase during meiosis I in vertebrate oocytes. Nature Cell Biol. 2006;8:1035-U120. doi:10.1038/ncb1467. PMID:16906143
  • Hellmuth S, Pohlmann C, Brown A, Bottger F, Sprinzl M, Stemmann O. Positive and Negative Regulation of Vertebrate Separase by Cdk1-Cyclin B1 May Explain Why Securin Is Dispensable. J Biol Chem. 2015;290:8002-10. doi:10.1074/jbc.M114.615310. PMID:25659430
  • Kudo NR, Wassmann K, Anger M, Schuh M, Wirth KG, Xu HL, Helmhart W, Kudo H, Mckay M, Maro B, et al. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell. 2006;126:135-46. doi:10.1016/j.cell.2006.05.033. PMID:16839882
  • Mitchell DM, Uehlein-Klebanow LR, Bembenek JN. Protease-Dead Separase Is Dominant Negative in the C. elegans Embryo. Plos One. 2014;9:1-9. doi:10.1371/journal.pone.0108188
  • McCarter J, Bartlett B, Dang T, Schedl T. On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol. 1999;205:111-28. doi:10.1006/dbio.1998.9109. PMID:9882501
  • Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, Glotzer M, Nasmyth K. Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr Biol. 2001;11:1825-35. doi:10.1016/S0960-9822(01)00588-7. PMID:11728305
  • Monen J, Hattersley N, Muroyama A, Stevens D, Oegema K, Desai A. Separase Cleaves the N-Tail of the CENP-A Related Protein CPAR-1 at the Meiosis I Metaphase-Anaphase Transition in C-elegans. Plos One. 2015;10:1-16. doi:10.1371/journal.pone.0125382. PMID:25919583
  • Schvarzstein M, Pattabiraman D, Bembenek JN, Villeneuve AM. Meiotic HORMA domain proteins prevent untimely centriole disengagement during Caenorhabditis elegans spermatocyte meiosis. Proc Nati Acad Sci U S A. 2013;110:E898-907. doi:10.1073/pnas.1213888110. PMID:23401519
  • Cabral G, Sans SS, Cowan CR, Dammermann A. Multiple Mechanisms Contribute to Centriole Separation in C. elegans. Curr Biol. 2013;23:1380-87. doi:10.1016/j.cub.2013.06.043. PMID:23885867
  • Mito Y, Sugimoto A, Yamamoto M. Distinct developmental function of two Caenorhabditis elegans homologs of the cohesin subunit Scc1/Rad21. Mol Biol Cell. 2003;14:2399-409. doi:10.1091/mbc.E02-09-0603. PMID:12808038
  • Bembenek JN, Richie CT, Squirrell JM, Campbell JM, Eliceiri KW, Poteryaev D, Spang A, Golden A, White JG. Cortical granule exocytosis in C-elegans is regulated by cell cycle components including separase. Development. 2007;134:3837-48. doi:10.1242/dev.011361. PMID:17913784
  • Sato M, Grant BD, Harada A, Sato K. Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. J Cell Sci. 2008;121:3177-86. doi:10.1242/jcs.034678. PMID:18765566
  • Bembenek JN, White JG, Zheng YX. A Role for Separase in the Regulation of RAB-11-Positive Vesicles at the Cleavage Furrow and Midbody. Curr Biol. 2010;20:259-64. doi:10.1016/j.cub.2009.12.045. PMID:20116245
  • Bacac M, Fusco C, Planche A, Santodomingo J, Demaurex N, Leemann-Zakaryan R, Provero P, Stamenkovic I. Securin and Separase Modulate Membrane Traffic by Affecting Endosomal Acidification. Traffic. 2011;12:615-26. doi:10.1111/j.1600-0854.2011.01169.x. PMID:21272169
  • Moschou PN, Smertenko AP, Minina EA, Fukada K, Savenkov EI, Robert S, Hussey PJ, Bozhkov PV. The caspase-related protease separase (extra spindle poles) regulates cell polarity and cytokinesis in Arabidopsis (vol 25, pg 2171, 2013). Plant Cell. 2014;26:3823-3823.
  • Tsou MF, Stearns T. Mechanism limiting centrosome duplication to once per cell cycle. Nature. 2006;442:947-51. doi:10.1038/nature04985. PMID:16862117
  • Schockel L, Mockel M, Mayer B, Boos D, Stemmann O. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat Cell Biol. 2011;13:966-72. doi:10.1038/ncb2280. PMID:21743463
  • Peel N, Iyer J, Naik A, Dougherty MP, Decker M, O'Connell KF. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication. PLoS Genet. 2017;13, e1006543. doi:10.1371/journal. pgen.1006543. PMID:28103229
  • Kachur TM, Audhya A, Pilgrim DB. UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C-elegans. Dev Biol. 2008;314:287-99. doi:10.1016/j.ydbio.2007.11.028. PMID:18190904
  • Bembenek JN, Verbrugghe KJ, Khanikar J, Csankovszki G, Chan RC. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos. Curr Biol. 2013;23:937-46. doi:10.1016/j.cub.2013.04.028. PMID:23684975
  • Norden C, Mendoza M, Dobbelaere J, Kotwaliwale CV, Biggins S, Barral Y. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell. 2006;125:85-98. doi:10.1016/j.cell.2006.01.045. PMID:16615892
  • Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S, Gerlich DW. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell. 2009;136:473-84. doi:10.1016/j.cell.2008.12.020. PMID:19203582
  • Agromayor M, Martin-Serrano J. Knowing when to but and run: mechanisms that control cytokinetic abscission. Trends Cell Biol. 2013;23:433-41. doi:10.1016/j.tcb.2013.04.006. PMID:23706391
  • Jantsch-Plunger V, Glotzer M. Depletion of syntaxins in the early Caenorhabditis elegans embryo reveals a role for membrane fusion events in cytokinesis. Curr Biol. 1999;9:738-45. doi:10.1016/S0960-9822(99)80333-9. PMID:10421575
  • Skop AR, Bergmann D, Mohler WA, White JG. Completion of cytokinesis in C-elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr Biol. 2001;11:735-46. doi:10.1016/S0960-9822(01)00231-7. PMID:11378383
  • Schiel JA, Childs C, Prekeris R. Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol. 2013;23:319-27. doi:10.1016/j.tcb.2013.02.003. PMID:23522622
  • Albertson R, Riggs B, Sullivan W. Membrane traffic: a driving force in cytokinesis. Trends Cell Biol. 2005;15:92-101. doi:10.1016/j.tcb.2004.12.008. PMID:15695096
  • Kimura K, Kimura A. Rab6 is required for the exocytosis of cortical granules and the recruitment of separase to the granules during the oocyte-to-embryo transition in Caenorhabditis elegans. J Cell Sci. 2012;125:5897-905. doi:10.1242/jcs.116400. PMID:22992455
  • Olson SK, Greenan G, Desai A, Müller-Reichert T, Oegema K. Hierarchical assembly of the eggshell and permeability barrier in C. elegans. The Journal of Cell Biology. 2012; 198(4):731. doi: 10.1083/jcb.201206008
  • Albertson DG, Thomson JN. The Kinetochores of Caenorhabditis-Elegans. Chromosoma. 1982;86;409-28. doi:10.1007/BF00292267. PMID:7172865
  • Hehnly H, Chen CT, Powers CM, Liu HL, Doxsey S. The Centrosome Regulates the Rab11-Dependent Recycling Endosome Pathway at Appendages of the Mother Centriole. Curr Biol. 2012;22:1944-50. doi:10.1016/j.cub.2012.08.022. PMID:22981775
  • Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell. 2006;126:1175-87. doi:10.1016/j.cell.2006.08.030. PMID:16990140
  • Richie CT, Bembenek JN, Chestnut B, Furuta T, Schumacher JM, Wallenfang M, Golden A. Protein phosphatase 5 is a negative regulator of separase function during cortical granule exocytosis in C. elegans. J Cell Sci. 2011;124:2903-13. doi:10.1242/jcs.073379. PMID:21878498
  • Fletcher AI, Shuang RQ, Giovannucci DR, Zhang L, Bittner MA, Stuenkel EL. Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem. 1999;274:4027-35. doi:10.1074/jbc.274.7.4027. PMID:9933594
  • Sakaguchi A, Sato M, Sato K, Gengyo-Ando K, Yorimitsu T, Nakai J, Hara T, Sato K, Sato K. REI-1 Is a Guanine Nucleotide Exchange Factor Regulating RAB-11 Localization and Function in C. elegans Embryos. Dev Cell. 2015;35:211-21. doi:10.1016/j.devcel.2015.09.013. PMID:26506309
  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000;408:325-30. doi:10.1038/35042517. PMID:11099033
  • Grishok A, Sinskey JL, Sharp PA. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev. 2005;19:683-96. doi:10.1101/gad.1247705. PMID:15741313
  • Edgar LG, Goldstein B. Culture and Manipulation of Embryonic Cells. Caenorhabditis Elegans: Cell Biol Physiology, Second Edition. 2012;07:153-75.
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676-82. doi:10.1038/nmeth.2019. PMID:22743772
  • Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, MacDonald D, et al. Metadata matters: access to image data in the real world. J Cell Biol. 2010;189:777-82. doi:10.1083/jcb.201004104. PMID:20513764

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.