3,221
Views
32
CrossRef citations to date
0
Altmetric
Review

Role of PEX5 ubiquitination in maintaining peroxisome dynamics and homeostasis

&
Pages 2037-2045 | Received 07 Aug 2017, Accepted 01 Sep 2017, Published online: 21 Sep 2017

References

  • Smith JJ, Aitchison JD. Peroxisomes take shape. Nat Rev Mol Cell Biol. 2013;14:803-17. doi:10.1038/nrm3700. PMID:24263361
  • Waterham HR, Ferdinandusse S, Wanders RJ. Human disorders of peroxisome metabolism and biogenesis. Biochimica et biophysica acta. 2016;1863:922-33. doi:10.1016/j.bbamcr.2015.11.015. PMID:26611709.
  • Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell. 2010;141:668-81. doi:10.1016/j.cell.2010.04.018. PMID:20451243.
  • Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, Tee AR, Tait-Mulder J, Di Nardo A, Han JM, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol. 2013;15:1186-96. doi:10.1038/ncb2822. PMID:23955302.
  • Suzuki Y, Shimozawa N, Orii T, Tsukamoto T, Osumi T, Fujiki Y, Kondo N. Genetic and molecular bases of peroxisome biogenesis disorders. Genetics in medicine: official journal of the American College of Medical Genetics. 2001;3:372-6. doi:10.1097/00125817-200109000-00007. PMID:11545691.
  • Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proceedings of the National Academy of Sciences of the United States of America 1975;72:11-5. doi:10.1073/pnas.72.1.11. PMID:1078892.
  • Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. Journal of cell science. 2012;125:531-7. doi:10.1242/jcs.091777. PMID:22389392.
  • Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem. 2009;78:399-434. doi:10.1146/annurev.biochem.78.101807.093809. PMID:19489725.
  • Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21:301-7. doi:10.1038/nsmb.2780.
  • Budhidarmo R, Nakatani Y, Day CL. RINGs hold the key to ubiquitin transfer. Trends Biochem Sci. 2012;37:58-65. doi:10.1016/j.tibs.2011.11.001. PMID:22154517.
  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989;243:1576-83. doi:10.1126/science.2538923. PMID:2538923.
  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000;19:94-102. doi:10.1093/emboj/19.1.94. PMID:10619848.
  • Haglund K, Dikic I. Ubiquitylation and cell signaling. EMBO J. 2005;24:3353-9. doi:10.1038/sj.emboj.7600808. PMID:16148945.
  • Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol. 2001;2:195-201. doi:10.1038/35056583. PMID:11265249.
  • Farre JC, Subramani S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol. 2016;17:537-52. doi:10.1038/nrm.2016.74. PMID:27381245.
  • Fahimi HD, Reinicke A, Sujatta M, Yokota S, Ozel M, Hartig F, Stegmeier K. The short- and long-term effects of bezafibrate in the rat. Annals of the New York Academy of Sciences 1982;386:111-35. doi:10.1111/j.1749-6632.1982.tb21410.x. PMID:6953842.
  • Yokota S. Quantitative immunocytochemical studies on differential induction of serine:pyruvate aminotransferase in mitochondria and peroxisomes of rat liver cells by administration of glucagon or di-(2-ethylhexyl)phthalate. Histochemistry 1986;85:145-55. doi:10.1007/BF00491762. PMID:3744897.
  • Yokota S. Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate. European journal of cell biology 1993;61:67-80. PMID:8223709.
  • Ezaki J, Komatsu M, Yokota S, Ueno T, Kominami E. Method for monitoring pexophagy in mammalian cells. Methods in enzymology. 2009;452:215-26. doi:10.1016/S0076-6879(08)03614-8. PMID:19200885.
  • Erdmann R. Assembly, maintenance and dynamics of peroxisomes. Biochimica et biophysica acta. 2016;1863:787-9. doi:10.1016/j.bbamcr.2016.01.020. PMID:26851075.
  • Honsho M, Yamashita S, Fujiki Y. Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals. Biochimica et biophysica acta. 2016;1863:984-91. doi:10.1016/j.bbamcr.2015.09.032. PMID:26434997.
  • Hettema EH, Erdmann R, van der Klei I, Veenhuis M. Evolving models for peroxisome biogenesis. Current opinion in cell biology. 2014;29:25-30. doi:10.1016/j.ceb.2014.02.002. PMID:24681485.
  • Mayerhofer PU. Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. Biochimica et biophysica acta. 2016;1863:870-80. doi:10.1016/j.bbamcr.2015.09.021. PMID:26392202.
  • Agrawal G, Subramani S. De novo peroxisome biogenesis: Evolving concepts and conundrums. Biochimica et biophysica acta. 2016;1863:892-901. doi:10.1016/j.bbamcr.2015.09.014. PMID:26381541.
  • Ma C, Agrawal G, Subramani S. Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol. 2011;193:7-16. doi:10.1083/jcb.201010022. PMID:21464226.
  • Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Frontiers in physiology. 2013;4:261. doi:10.3389/fphys.2013.00261. PMID:24069002.
  • Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. Proliferation and fission of peroxisomes – An update. Biochimica et biophysica acta. 2016;1863:971-83. doi:10.1016/j.bbamcr.2015.09.024. PMID:26409486.
  • Sugiura A, Mattie S, Prudent J, McBride HM. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542:251-4. doi:10.1038/nature21375. PMID:28146471.
  • Fagarasanu A, Mast FD, Knoblach B, Rachubinski RA. Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast. Nat Rev Mol Cell Biol. 2010;11:644-54. doi:10.1038/nrm2960. PMID:20717147.
  • Knoblach B, Rachubinski RA. Sharing with your children: Mechanisms of peroxisome inheritance. Biochimica et biophysica acta. 2016;1863:1014-8. doi:10.1016/j.bbamcr.2015.11.023. PMID:26620799.
  • Mizushima N. Autophagy: process and function. Genes & development. 2007;21:2861-73. doi:10.1101/gad.1599207.
  • Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16:461-72. doi:10.1038/nrm4024. PMID:26177004.
  • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280-93. doi:10.1016/j.molcel.2010.09.023. PMID:20965422.
  • Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selective degradation of peroxisomes. International journal of cell biology. 2012;2012:512721. doi:10.1155/2012/512721. PMID:22536249.
  • Farre JC, Manjithaya R, Mathewson RD, Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Developmental cell. 2008;14:365-76. doi:10.1016/j.devcel.2007.12.011. PMID:18331717.
  • Motley AM, Nuttall JM, Hettema EH. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 2012;31:2852-68. doi:10.1038/emboj.2012.151. PMID:22643220.
  • Farre JC, Burkenroad A, Burnett SF, Subramani S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO reports. 2013;14:441-9. doi:10.1038/embor.2013.40. PMID:23559066.
  • Anding AL, Baehrecke EH. Cleaning House: Selective Autophagy of Organelles. Developmental cell. 2017;41:10-22. doi:10.1016/j.devcel.2017.02.016. PMID:28399394.
  • De Duve C, Baudhuin P. Peroxisomes (microbodies and related particles). Physiological reviews 1966;46:323-57. PMID:5325972.
  • Wang W, Subramani S. Assays to Monitor Pexophagy in Yeast. Methods in enzymology. 2017;588:413-27. doi:10.1016/bs.mie.2016.09.088. PMID:28237113.
  • Schnell DJ, Hebert DN. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell. 2003;112:491-505. doi:10.1016/S0092-8674(03)00110-7. PMID:12600313.
  • Leon S, Goodman JM, Subramani S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. Biochimica et biophysica acta. 2006;1763:1552-64. doi:10.1016/j.bbamcr.2006.08.037. PMID:17011644.
  • Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B, Hust B, Klosgen RB. Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts. Journal of plant physiology. 2006;163:333-47. doi:10.1016/j.jplph.2005.11.009. PMID:16386331.
  • Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annual review of cell and developmental biology 1999;15:607-60. doi:10.1146/annurev.cellbio.15.1.607. PMID:10611974.
  • Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 1989;108:1657-64. doi:10.1083/jcb.108.5.1657. PMID:2654139.
  • Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 1991;10:3255-62. PMID:1680677.
  • Klein AT, van den Berg M, Bottger G, Tabak HF, Distel B. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem. 2002;277:25011-9.
  • Effelsberg D, Cruz-Zaragoza LD, Tonillo J, Schliebs W, Erdmann R. Role of Pex21p for Piggyback Import of Gpd1p and Pnc1p into Peroxisomes of Saccharomyces cerevisiae. J Biol Chem. 2015;290:25333-42. doi:10.1074/jbc.M115.653451. PMID:26276932.
  • Saidowsky J, Dodt G, Kirchberg K, Wegner A, Nastainczyk W, Kunau WH, Schliebs W. The di-aromatic pentapeptide repeats of the human peroxisome import receptor PEX5 are separate high affinity binding sites for the peroxisomal membrane protein PEX14. J Biol Chem. 2001;276:34524-9. doi:10.1074/jbc.M104647200. PMID:11438541.
  • Gatto GJ, Jr., Geisbrecht BV, Gould SJ, Berg JM. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol. 2000;7:1091-5. doi:10.1038/81930. PMID:11101887.
  • Purdue PE, Yang X, Lazarow PB. Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. J Cell Biol 1998;143:1859-69. doi:10.1083/jcb.143.7.1859. PMID:9864360.
  • Einwachter H, Sowinski S, Kunau WH, Schliebs W. Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway. EMBO Rep. 2001;2:1035-9. doi:10.1093/embo-reports/kve228. PMID:11606420.
  • Sichting M, Schell-Steven A, Prokisch H, Erdmann R, Rottensteiner H. Pex7p and Pex20p of Neurospora crassa function together in PTS2-dependent protein import into peroxisomes. Mol Biol Cell. 2003;14:810-21. doi:10.1091/mbc.E02-08-0539. PMID:12589072.
  • Elgersma Y, Elgersma-Hooisma M, Wenzel T, McCaffery JM, Farquhar MG, Subramani S. A mobile PTS2 receptor for peroxisomal protein import in Pichia pastoris. J Cell Biol 1998;140:807-20. doi:10.1083/jcb.140.4.807. PMID:9472033.
  • Braverman N, Dodt G, Gould SJ, Valle D. An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum Mol Genet. 1998;7:1195-205. doi:10.1093/hmg/7.8.1195. PMID:9668159.
  • Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y. The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem. 2000;275:21703-14. doi:10.1074/jbc.M000720200. PMID:10767286.
  • Lee JR, Jang HH, Park JH, Jung JH, Lee SS, Park SK, Chi YH, Moon JC, Lee YM, Kim SY, et al. Cloning of two splice variants of the rice PTS1 receptor, OsPex5pL and OsPex5pS, and their functional characterization using pex5-deficient yeast and Arabidopsis. The Plant journal: for cell and molecular biology. 2006;47:457-66. doi:10.1111/j.1365-313X.2006.02797.x. PMID:16792693.
  • Schliebs W, Kunau WH. PTS2 co-receptors: diverse proteins with common features. Biochimica et biophysica acta. 2006;1763:1605-12. doi:10.1016/j.bbamcr.2006.08.051. PMID:17028014.
  • Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D, et al. A mouse model for Zellweger syndrome. Nat Genet. 1997;17:49-57. doi:10.1038/ng0997-49. PMID:9288097.
  • Shimozawa N, Zhang Z, Suzuki Y, Imamura A, Tsukamoto T, Osumi T, Fujiki Y, Orii T, Barth PG, Wanders RJ, et al. Functional heterogeneity of C-terminal peroxisome targeting signal 1 in PEX5-defective patients. Biochem Biophys Res Commun. 1999;262:504-8. doi:10.1006/bbrc.1999.1232. PMID:10462504.
  • Ebberink MS, Mooyer PA, Koster J, Dekker CJ, Eyskens FJ, Dionisi-Vici C, Clayton PT, Barth PG, Wanders RJ, Waterham HR. Genotype-phenotype correlation in PEX5-deficient peroxisome biogenesis defective cell lines. Hum Mutat. 2009;30:93-8. doi:10.1002/humu.20833. PMID:18712838.
  • Williams CP, Stanley WA. Peroxin 5: a cycling receptor for protein translocation into peroxisomes. The international journal of biochemistry & cell biology. 2010;42:1771-4. doi:10.1016/j.biocel.2010.07.004.
  • White SR, Lauring B. AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic. 2007;8:1657-67. doi:10.1111/j.1600-0854.2007.00642.x. PMID:17897320.
  • Lupas AN, Martin J. AAA proteins. Curr Opin Struct Biol. 2002;12:746-53. doi:10.1016/S0959-440X(02)00388-3. PMID:12504679.
  • Gouveia AM, Guimaraes CP, Oliveira ME, Reguenga C, Sa-Miranda C, Azevedo JE. Characterization of the peroxisomal cycling receptor, Pex5p, using a cell-free in vitro import system. J Biol Chem. 2003;278:226-32. doi:10.1074/jbc.M209498200. PMID:12411433.
  • Oliveira ME, Gouveia AM, Pinto RA, Sa-Miranda C, Azevedo JE. The energetics of Pex5p-mediated peroxisomal protein import. J Biol Chem. 2003;278:39483-8. doi:10.1074/jbc.M305089200. PMID:12885776.
  • Ciniawsky S, Grimm I, Saffian D, Girzalsky W, Erdmann R, Wendler P. Molecular snapshots of the Pex1/6 AAA+ complex in action. Nat Commun. 2015;6:7331. doi:10.1038/ncomms8331. PMID:26066397.
  • Kiel JA, Veenhuis M, van der Klei IJ. PEX genes in fungal genomes: common, rare or redundant. Traffic. 2006;7:1291-303. doi:10.1111/j.1600-0854.2006.00479.x. PMID:16978390.
  • Grimm I, Erdmann R, Girzalsky W. Role of AAA(+)-proteins in peroxisome biogenesis and function. Biochimica et biophysica acta. 2016;1863:828-37. doi:10.1016/j.bbamcr.2015.10.001. PMID:26453804.
  • Birschmann I, Stroobants AK, van den Berg M, Schafer A, Rosenkranz K, Kunau WH, Tabak HF. Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mol Biol Cell. 2003;14:2226-36. doi:10.1091/mbc.E02-11-0752. PMID:12808025.
  • Matsumoto N, Tamura S, Fujiki Y. The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol. 2003;5:454-60. doi:10.1038/ncb982. PMID:12717447.
  • Goto S, Mano S, Nakamori C, Nishimura M. Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 is a peroxin that recruits the PEX1-PEX6 complex to peroxisomes. Plant Cell. 2011;23:1573-87. doi:10.1105/tpc.110.080770. PMID:21487094.
  • Williams C, van den Berg M, Sprenger RR, Distel B. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem. 2007;282:22534-43. doi:10.1074/jbc.M702038200. PMID:17550898.
  • Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol. 2007;177:197-204. doi:10.1083/jcb.200611012. PMID:17452527.
  • Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sa-Miranda C, Azevedo JE. Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem. 2007;282:31267-72. doi:10.1074/jbc.M706325200. PMID:17726030.
  • Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y. Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic. 2011;12:1067-83. doi:10.1111/j.1600-0854.2011.01217.x. PMID:21554508.
  • Wiebel FF, Kunau WH. The Pas2 protein essential for peroxisome biogenesis is related to ubiquitin-conjugating enzymes. Nature 1992;359:73-6. doi:10.1038/359073a0. PMID:1326082.
  • Koller A, Snyder WB, Faber KN, Wenzel TJ, Rangell L, Keller GA, Subramani S. Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J Cell Biol 1999;146:99-112. PMID:10402463.
  • El Magraoui F, Schrotter A, Brinkmeier R, Kunst L, Mastalski T, Muller T, Marcus K, Meyer HE, Girzalsky W, Erdmann R, et al. The cytosolic domain of Pex22p stimulates the Pex4p-dependent ubiquitination of the PTS1-receptor. PloS one. 2014;9:e105894. doi:10.1371/journal.pone.0105894. PMID:25162638.
  • Agne B, Meindl NM, Niederhoff K, Einwachter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH. Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell. 2003;11:635-46. doi:10.1016/S1097-2765(03)00062-5. PMID:12667447.
  • El Magraoui F, Baumer BE, Platta HW, Baumann JS, Girzalsky W, Erdmann R. The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner. FEBS J. 2012;279:2060-70. doi:10.1111/j.1742-4658.2012.08591.x. PMID:22471590.
  • Platta HW, El Magraoui F, Baumer BE, Schlee D, Girzalsky W, Erdmann R. Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol. 2009;29:5505-16. doi:10.1128/MCB.00388-09. PMID:19687296.
  • Okumoto K, Noda H, Fujiki Y. Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import. J Biol Chem. 2014;289:14089-108. doi:10.1074/jbc.M113.527937. PMID:24662292.
  • Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE, Warscheid B, Sa-Miranda C, Azevedo JE. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem. 2008;283:14190-7. doi:10.1074/jbc.M800402200. PMID:18359941.
  • Ma C, Hagstrom D, Polley SG, Subramani S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem. 2013;288:27220-31. doi:10.1074/jbc.M113.492694. PMID:23902771.
  • Alencastre IS, Rodrigues TA, Grou CP, Fransen M, Sa-Miranda C, Azevedo JE. Mapping the cargo protein membrane translocation step into the PEX5 cycling pathway. J Biol Chem. 2009;284:27243-51. doi:10.1074/jbc.M109.032565. PMID:19632994.
  • Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ, Walton PA, Terlecky SR. Peroxisome senescence in human fibroblasts. Mol Biol Cell. 2002;13:4243-55. doi:10.1091/mbc.E02-06-0322. PMID:12475949.
  • Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M, Dodt G, Azevedo JE, Fransen M. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic. 2014;15:94-103. doi:10.1111/tra.12129. PMID:24118911.
  • Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE, Warscheid B, Girzalsky W, Erdmann R. Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem. 2011;286:28223-34. doi:10.1074/jbc.M111.238600. PMID:21665945.
  • Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodriguez-Borges JE, Sa-Miranda C, et al. Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem. 2012;287:12815-27. doi:10.1074/jbc.M112.340158. PMID:22371489.
  • Wang W, Xia ZJ, Farre JC, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017. doi:10.1083/jcb.201611170.
  • Kragt A, Voorn-Brouwer T, van den Berg M, Distel B. The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells. J Biol Chem. 2005;280:7867-74. doi:10.1074/jbc.M413553200. PMID:15632140.
  • Kiel JA, Emmrich K, Meyer HE, Kunau WH. Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem. 2005;280:1921-30. doi:10.1074/jbc.M403632200. PMID:15536088.
  • Platta HW, Girzalsky W, Erdmann R. Ubiquitination of the peroxisomal import receptor Pex5p. The Biochemical journal. 2004;384:37-45. doi:10.1042/BJ20040572. PMID:15283676.
  • Seufert W, McGrath JP, Jentsch S. UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J 1990;9:4535-41. PMID:2265617.
  • Seufert W, Jentsch S. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 1990;9:543-50. PMID:2154373.
  • Leon S, Zhang L, McDonald WH, Yates J, 3rd, Cregg JM, Subramani S. Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J Cell Biol. 2006;172:67-78. doi:10.1083/jcb.200508096. PMID:16390998.
  • Dodt G, Gould SJ. Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor. J Cell Biol 1996;135:1763-74. doi:10.1083/jcb.135.6.1763. PMID:8991089.
  • Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J 1996;15:2914-23. PMID:8670792.
  • Nuttall JM, Motley AM, Hettema EH. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy. 2014;10:835-45. doi:10.4161/auto.28259. PMID:24657987.
  • Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol. 2010;12:836-41. doi:10.1038/ncb0910-836. PMID:20811356.
  • Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim S, Lamark T, Jauregui M, Law K, Lippincott-Schwartz J, et al. NBR1 acts as an autophagy receptor for peroxisomes. Journal of cell science. 2013;126:939-52. doi:10.1242/jcs.114819. PMID:23239026.
  • Yamashita S, Abe K, Tatemichi Y, Fujiki Y. The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy. 2014;10:1549-64. doi:10.4161/auto.29329. PMID:25007327.
  • Sargent G, van Zutphen T, Shatseva T, Zhang L, Di Giovanni V, Bandsma R, Kim PK. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J Cell Biol. 2016;214:677-90. doi:10.1083/jcb.201511034. PMID:27597759.
  • Subramani S. A mammalian pexophagy target. Nat Cell Biol. 2015;17:1371-3. doi:10.1038/ncb3253. PMID:26458245.
  • Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197-210. doi:10.1038/nrm3546.
  • Watters D, Kedar P, Spring K, Bjorkman J, Chen P, Gatei M, Birrell G, Garrone B, Srinivasa P, Crane DI, et al. Localization of a portion of extranuclear ATM to peroxisomes. J Biol Chem 1999;274:34277-82. doi:10.1074/jbc.274.48.34277. PMID:10567403.
  • Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17:1259-69. doi:10.1038/ncb3230. PMID:26344566.
  • Nordgren M, Francisco T, Lismont C, Hennebel L, Brees C, Wang B, Van Veldhoven PP, Azevedo JE, Fransen M. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy. 2015;11:1326-40. doi:10.1080/15548627.2015.1061846. PMID:26086376.
  • Law KB, Bronte-Tinkew D, Di Pietro E, Snowden A, Jones RO, Moser A, Brumell JH, Braverman N, Kim PK. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. Autophagy. 2017;13:868-84. doi:10.1080/15548627.2017.1291470. PMID:28521612.
  • Nazarko TY. Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders. Autophagy. 2017;13:991-4. doi:10.1080/15548627.2017.1291480. PMID:28318378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.