1,050
Views
9
CrossRef citations to date
0
Altmetric
Reports

A DP-like transcription factor protein interacts with E2fl1 to regulate meiosis in Tetrahymena thermophila

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 634-642 | Received 09 Oct 2017, Accepted 17 Jan 2018, Published online: 04 Apr 2018

References

  • Kohl KP, Sekelsky J. Meiotic and mitotic recombination in meiosis. Genetics. 2013;194(2):327–334. doi:10.1534/genetics.113.150581. PMID:23733849
  • Chi JY, Mahe F, Loidl J, et al. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol Biol Evol. 2014;31(3):660–672. doi:10.1093/molbev/mst258. PMID:24336924
  • Orias E, Cervantes MD, Hamilton EP. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res Microbiol. 2011;162(6):578–586. doi:10.1016/j.resmic.2011.05.001. PMID:21624459
  • Mochizuki K, Novatchkova M, Loidl J. DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena. J Cell Sci. 2008;121(13):2148–2158. doi:10.1242/jcs.031799. PMID:18522989
  • Loidl J, Lukaszewicz A, Howard-Till RA, et al. The Tetrahymena meiotic chromosome bouquet is organized by centromeres and promotes interhomolog recombination. J Cell Sci. 2012;125(23):5873–5880. doi:10.1242/jcs.112664. PMID:22976299
  • Lukaszewicz A, Howard-Till RA, Novatchkova M, et al. Mre11 and Com1/Sae2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena. Chromosoma. 2010;119(5):505–518. doi:10.1007/s00412-010-0274-9. PMID:20422424
  • Lukaszewicz A, Shodhan A, Loidl J. Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena. DNA Repair. 2015;35:137–143. doi:10.1016/j.dnarep.2015.08.005. PMID:26519827
  • Howard-Till RA, Lukaszewicz A, Loidl J. The recombinases Rad51 and Dmc1 play distinct roles in DNA break repair and recombination partner choice in the meiosis of Tetrahymena. Plos Genet. 2011;7(3):e1001359. doi:10.1371/journal.pgen.1001359. PMID:21483758
  • Loidl J, Lorenz A. DNA double-strand break formation and repair in Tetrahymena meiosis. Semin Cell Dev Biol. 2016;54:126–134. doi:10.1016/j.semcdb.2016.02.021. PMID:26899715
  • Lukaszewicz A, Howard-Till RA, Loidl J. Mus81 nuclease and Sgs1 helicase are essential for meiotic recombination in a protist lacking a synaptonemal complex. Nucleic Acids Res. 2013;41(20):9296–9309. doi:10.1093/nar/gkt703. PMID:23935123
  • Shodhan A, Lukaszewicz A, Novatchkova M, et al. Msh4 and Msh5 function in SC-independent chiasma formation during the streamlined meiosis of Tetrahymena. Genetics. 2014;198(3):983–993. doi:10.1534/genetics.114.169698. PMID:25217051
  • Shodhan A, Kataoka K, Mochizuki K, et al. A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena. Mol Biol Cell. 2017;28(6):825–833. doi:10.1091/mbc.E16-09-0678. PMID:28100637
  • Shodhan A, Novatchkova M, Loidl J. BIME2, a novel gene required for interhomolog meiotic recombination in the protist model organism Tetrahymena. Chromosome Res. 2017;25(3–4):291–298. doi:10.1007/s10577-017-9563-y. PMID:28803330
  • Howard-Till RA, Lukaszewicz A, Novatchkova M, et al. A single cohesin complex performs mitotic and meiotic functions in the protist Tetrahymena. Plos Genet. 2013;9(3):e1003418. doi:10.1371/journal.pgen.1003418. PMID:23555314
  • Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323–330. doi:http://www.ncbi.nlm.nih.gov/pubmed/7736585. PMID:7736585
  • van den Heuvel S, Dyson NJ. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol. 2008;9(9):713–724. doi:10.1038/nrm2469. PMID:18719710
  • Zhang J, Tian M, Yan GX, et al. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila. Cell Cycle. 2017;16(1):123–135. doi:10.1080/15384101.2016.1259779. PMID:27892792
  • Girling R, Partridge JF, Bandara LR, et al. A new component of the transcription factor DRTF1/E2F. Nature. 1993;365(6445):468. doi:10.1038/365468d0. PMID:8413592
  • Helin K, Wu CL, Fattaey AR, et al. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 1993;7(10):1850–1861. doi:http://www.ncbi.nlm.nih.gov/pubmed/8405995. PMID:8405995
  • Dynlacht BD, Brook A, Dembski M, et al. DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc Natl Acad Sci USA. 1994;91(14):6359–6363. doi:http://www.ncbi.nlm.nih.gov/pubmed/8022787. PMID:8022787
  • Mariconti L, Pellegrini B, Cantoni R, et al. The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoma/E2F pathway in plants. J Biol Chem. 2002;277(12):9911–9919. doi:10.1074/jbc.M110616200. PMID:11786543
  • Krek W, Livingston DM, Shirodkar S. Binding to DNA and the retinoblastoma gene product promoted by complex formation of different E2F family members. Science. 1993;262(5139):1557–1560. doi:http://www.ncbi.nlm.nih.gov/pubmed/8248803. PMID:8248803
  • Dyson N. The regulation of E2F by pRB-family proteins. Gene Dev. 1998;12(15):2245–2262. doi:10.1101/gad.12.15.2245. PMID:9694791
  • Bracken AP, Ciro M, Cocito A, et al. E2F target genes: unraveling the biology. Trends Biochem Sci. 2004;29(8):409–417. doi:10.1016/j.tibs.2004.06.006. PMID:15362224
  • Hao XF, Alphey L, Bandara LR, et al. Functional conservation of the cell cycle-regulating transcription factor DRTF1/E2F and its pathway of control in Drosophila melanogaster. J Cell Sci. 1995;108(Pt 9):2945–2954. doi:http://www.ncbi.nlm.nih.gov/pubmed/8537434. PMID:8537434
  • Miao W, Xiong J, Bowen J, et al. Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. Plos One. 2009;4(2):e4429. doi:10.1371/Journal.Pone.0004429. PMID:19204800
  • Yan GX, Dang H, Tian M, et al. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila. Cell Cycle. 2016;15(14):1855–1864. doi:10.1080/15384101.2016.1188238. PMID:27192402
  • Yan GX, Zhang J, Shodhan A, et al. Cdk3, a conjugation-specific cyclin-dependent kinase, is essential for the initiation of meiosis in Tetrahymena thermophila. Cell Cycle. 2016;15(18):2506–2514. doi:10.1080/15384101.2016.1207838. PMID:27420775
  • Lammens T, Li J, Leone G, et al. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 2009;19(3):111–118. doi:10.1016/j.tcb.2009.01.002. PMID:19201609
  • Zheng N, Fraenkel E, Pabo CO, et al. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev. 1999;13(6):666–674. doi:http://www.ncbi.nlm.nih.gov/pubmed/10090723. PMID:10090723
  • Fischer M, Muller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol. 2017;52(6):638–662. doi:10.1080/10409238.2017.1360836.
  • Lee H, Ragusano L, Martinez A, et al. A dual role for the dREAM/MMB complex in the regulation of differentiation-specific E2F/RB target genes. Mol Cell Biol. 2012;32(11):2110–2120. doi:10.1128/MCB.06314-11. PMID:22451490
  • Cao L, Peng B, Yao L, et al. The ancient function of RB-E2F pathway: insights from its evolutionary history. Biol Direct. 2010;5(1):55. doi:10.1186/1745-6150-5-55. PMID:20849664
  • Flowers S, Beck GR Jr., Moran E. Tissue-specific gene targeting by the multiprotein mammalian DREAM complex. J Biol Chem. 2011;286(32):27867–27871. doi:10.1074/jbc.C111.255091. PMID:21685383
  • Magyar Z, Bogre L, Ito M. DREAMs make plant cells to cycle or to become quiescent. Curr Opin Plant Biol. 2016;34:100–106. doi:10.1016/j.pbi.2016.10.002. PMID:27816815
  • Marceau AH, Felthousen JG, Goetsch PD, et al. Structural basis for LIN54 recognition of CHR elements in cell cycle-regulated promoters. Nat Commun. 2016;7:12301. doi:10.1038/ncomms12301. PMID:27465258
  • Jiang J, Benson E, Bausek N, et al. Tombola, a tesmin/TSO1-family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with always early. Development. 2007;134(8):1549–1559. doi:10.1242/dev.000521. PMID:17360778
  • Bishop DK, Zickler D. Early decision: meiotic crossover interference prior to stable strand exchange and synapsis. Cell. 2004;117(1):9–15. doi:10.1016/S0092-8674(04)00297-1. PMID:15066278
  • Borner GV, Kleckner N, Hunter N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell. 2004;117(1):29–45. doi:10.1016/S0092-8674(04)00292-2. PMID:15066280
  • Orias E, Hamilton EP, Orias JD. Tetrahymena as a laboratory organism: useful strains, cell culture, and cell line maintenance. Method Cell Biol. 2000;62(62):189–211. doi:https://doi.org/10.1016/S0091-679X(08)61530-7.
  • Tian M, Yang W, Zhang J, et al. Nonsense-mediated mRNA decay in Tetrahymena is EJC independent and requires a protozoa-specific nuclease. Nucleic Acids Res. 2017;45(11):6848–6863. doi:10.1093/nar/gkx256. PMID:28402567
  • Mochizuki K. High efficiency transformation of Tetrahymena using a codon-optimized neomycin resistance gene. Gene. 2008;425(1-2):79–83. doi:10.1016/j.gene.2008.08.007. PMID:18775482
  • Cassidyhanley D, Bowen J, Lee JH, et al. Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics. 1997;146(1):135–147. doi:http://www.genetics.org/content/genetics/146/1/135. PMID:9136007
  • Loidl J, Scherthan H. Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. J Cell Sci. 2004;117(24):5791–5801. doi:10.1242/jcs.01504. PMID:15522890
  • Liu Y, Taverna SD, Muratore TL, et al. RNAi-dependent H3K27 methylation is required for heterochromatin formation and DNA elimination in Tetrahymena. Genes Dev. 2007;21(12):1530–1545. doi:10.1101/gad.1544207. PMID:17575054
  • Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi:10.1093/nar/25.17.3389. PMID:9254694
  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(D1):D222–D226. doi:10.1093/nar/gku1221. PMID:25414356
  • Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(Web Server issue):W320–W324. doi:10.1093/nar/gku316. PMID:24753421
  • Xiong J, Lu XY, Zhou ZM, et al. Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using deep RNA sequencing. Plos One. 2012;7(2):e30630. doi:10.1371/journal.pone.0030630. PMID:22347391
  • Wu ZP, Wang X, Zhang XG. Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq. Bioinformatics. 2011;27(4):502–508. doi:10.1093/bioinformatics/btq696. PMID:21169371
  • Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12(8):R72. doi:10.1186/Gb-2011-12-8-R72. PMID:21835007
  • Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–578. doi:10.1038/nprot.2012.016. PMID:22383036
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25(1):25–29. doi:10.1038/75556.
  • Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–3449. doi:10.1093/bioinformatics/bti551. PMID:15972284

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.