2,708
Views
6
CrossRef citations to date
0
Altmetric
Reports

Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal

, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 535-549 | Received 16 Nov 2017, Accepted 13 Feb 2018, Published online: 05 Apr 2018

References

  • Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19(3):193–204. doi:10.1634/stemcells.19-3-19310.1634/stemcells.19-3-193. PMID: 11359944
  • Muffat J, Li Y, Jaenisch R. CNS disease models with human pluripotent stem cells in the CRISPR age. Curr Opin Cell Biol. 2016;43:96–103. doi:10.1016/j.ceb.2016.10.00110.1016/j.ceb.2016.10.001. PMID: 27768957
  • Muffat J, Li Y, Yuan B, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med. 2016;22(11):1358–1367. doi:10.1038/nm.418910.1038/nm.4189. PMID: 27668937
  • Waddington SN, Privolizzi R, Karda R, et al. A Broad Overview and Review of CRISPR-Cas Technology and Stem Cells. Curr Stem Cell Reports. 2016;2(1):9–20. doi:10.1007/s40778-016-0037-510.1007/s40778-016-0037-5.
  • González F, Zhu Z, Shi Z-D, et al. An iCRISPR Platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. 2014;15(2):215–226.https://doi.org/10.1016/j.stem.2014.05.01810.1016/j.stem.2014.05.018. PMID: 24931489
  • Chen Y, Cao J, Xiong M, et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell. 2015;17(2):233–244. doi:10.1016/j.stem.2015.06.00110.1016/j.stem.2015.06.001. PMID: 26145478
  • Mandegar MA, Huebsch N, Frolov EB, et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 2016;18(4):541–553. doi:10.1016/j.stem.2016.01.02210.1016/j.stem.2016.01.022. PMID: 26971820
  • Bertero A, Pawlowski M, Ortmann D, et al. Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs. Development. 2016;143(23):4405–4418. doi:10.1242/dev.13808110.1242/dev.138081. PMID: 27899508
  • Ware CB, Nelson AM, Mecham B, et al. Derivation of naive human embryonic stem cells. Proc Natl Acad Sci USA. 2014;111(12):4484–4489. doi:10.1073/pnas.131973811110.1073/pnas.1319738111.
  • Theunissen TW, Powell BE, Wang H, et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell. 2014;15(4):471–487. doi:10.1016/j.stem.2014.07.00210.1016/j.stem.2014.07.002. PMID: 25090446
  • Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 2014;158(6):1254–1269. doi:10.1016/j.cell.2014.08.02910.1016/j.cell.2014.08.029. PMID: 25215486
  • Sperber H, Mathieu J, Wang Y, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17(12):1523–1535. doi:10.1038/ncb326410.1038/ncb3264. PMID: 26571212
  • Gafni O, Weinberger L, Mansour AA, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504(7479):282–286. doi:10.1038/nature1274510.1038/nature12745. PMID: 24172903
  • Chan Y-S, Göke J, Ng J-H, et al. Induction of a Human Pluripotent State with Distinct Regulatory Circuitry that Resembles Preimplantation Epiblast. Cell Stem Cell. 2013;13(6):663–675. doi:10.1016/j.stem.2013.11.01510.1016/j.stem.2013.11.015. PMID: 24315441
  • Qin H, Hejna M, Liu Y, et al. YAP induces human naive pluripotency. Cell Rep. 2016;14(10):2301–2312. doi:10.1016/j.celrep.2016.02.03610.1016/j.celrep.2016.02.036. PMID: 26947063
  • Pastor WA, Chen D, Liu W, et al. Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell. 2016;18(3):323–329. doi:10.1016/j.stem.2016.01.01910.1016/j.stem.2016.01.019. PMID: 26853856
  • Guo G, von Meyenn F, Santos F, et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports. 2016;6(4):437–446. doi:10.1016/j.stemcr.2016.02.00510.1016/j.stemcr.2016.02.005. PMID: 26947977
  • Yang Y, Liu B, Xu J, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell. 2017;169(2):243–257. doi:10.1016/j.cell.2017.02.00510.1016/j.cell.2017.02.005. PMID: 28388409
  • Yang Y, Zhang X, Yi L, et al. Naive induced pluripotent stem cells generated from -thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl Med. 2016;5(2):267-267. doi:10.5966/sctm.2015-0157erratum10.5966/sctm.2015-0157erratum. PMID: 26819338
  • Moody JD*, Levy S*, Mathieu J*, et al. First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. PNAS. 2017;114(38):10125–10130. doi:10.1073/pnas.170690711410.1073/pnas.1706907114. PMID: 28864533
  • Theunissen TW, Friedli M, He Y, et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell. 2016;19(4):502–515. doi:10.1016/j.stem.2016.06.01110.1016/j.stem.2016.06.011. PMID: 27424783
  • Chong JJH, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273–277. doi:10.1038/nature1323310.1038/nature13233. PMID: 24776797
  • Montague TG, Cruz JM, Gagnon JA, et al. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42(Web Server issue):W401–W407. doi:10.1093/nar/gku41010.1093/nar/gku410. PMID: 24861617
  • Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015;12(10):982–988. doi:10.1038/nmeth.354310.1038/nmeth.3543. PMID: 26322839
  • Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20(9):1131–1139. doi:10.1038/nsmb.266010.1038/nsmb.2660. PMID: 23934149
  • Theunissen TW, Friedli M, He Y, et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell. 2016;19(4):502–515. doi:10.1016/j.stem.2016.06.01110.1016/j.stem.2016.06.011. PMID: 27424783
  • Grow EJ, Flynn RA, Chavez SL, et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature. 2015;522(7555):221–225. doi:10.1038/nature1430810.1038/nature14308. PMID: 25896322
  • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–1111. doi:10.1093/bioinformatics/btp12010.1093/bioinformatics/btp120. PMID: 19289445
  • Novodvorska M, Stratford M, Blythe MJ, et al. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth. Fungal Genet Biol. 2016;94:23–31. doi:10.1016/j.fgb.2016.07.00210.1016/j.fgb.2016.07.002. PMID: 27378203
  • Nakamura T, Okamoto I, Sasaki K, et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature. 2016;537(7618):57–62. doi:10.1038/nature1909610.1038/nature19096. PMID: 27556940
  • Van Der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–2605.
  • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–127. doi:10.1093/biostatistics/kxj03710.1093/biostatistics/kxj037. PMID: 16632515
  • Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27(9):851–857. doi:10.1038/nbt.156210.1038/nbt.1562. PMID: 19680244
  • Mathieu J, Zhang Z, Nelson A, et al. Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells. 2013;31(9):1737–1748. doi:10.1002/stem.144610.1002/stem.1446. PMID: 23765801
  • Gantz JA, Palpant NJ, Welikson RE, et al. Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells. PLOS One. 2012;7(10):e46971. doi:10.1371/journal.pone.004697110.1371/journal.pone.0046971. PMID: 23071682
  • Smith JR, Maguire S, Davis LA, et al. Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells. 2008;26(2):496–504. doi:10.1634/stemcells.2007-003910.1634/stemcells.2007-0039. PMID: 18024421
  • Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 2014;158(6):1254–1269. doi:10.1016/j.cell.2014.08.02910.1016/j.cell.2014.08.029. PMID: 25215486
  • Jayadev S, Leverenz JB, Steinbart E, et al. Alzheimer's disease phenotypes and genotypes associated with mutations in presenilin 2. Brain. 2010;133(4):1143–1154. doi:10.1093/brain/awq03310.1093/brain/awq033. PMID: 20375137
  • Vizán P, Beringer M, Ballaré C, et al. Role of PRC2-associated factors in stem cells and disease. FEBS J. 2015;282(9):1723–1735. doi:10.1111/febs.1308310.1111/febs.13083. PMID: 25271128
  • Landeira D, Bagci H, Malinowski AR, et al. Jarid2 Coordinates nanog expression and PCP/Wnt signaling required for efficient ESC differentiation and early embryo development. Cell Rep. 2015;12(4):573–586. doi:10.1016/j.celrep.2015.06.06010.1016/j.celrep.2015.06.060. PMID: 26190104
  • Pasini D, Cloos PAC, Walfridsson J, et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature. 2010;464(7286):306–310. doi:10.1038/nature0878810.1038/nature08788. PMID: 20075857
  • Zhang Z, Jones A, Sun C-W, et al. PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprograming. Stem Cells. 2011;29(2):229–240. doi:10.1002/stem.57810.1002/stem.578. PMID: 21732481
  • Cooper S, Grijzenhout A, Underwood E, et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 2016;7:13661. doi:10.1038/ncomms1366110.1038/ncomms13661. PMID: 27892467
  • Peng JC, Valouev A, Swigut T, et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell. 2009;139(7):1290–1302. doi:10.1016/j.cell.2009.12.00210.1016/j.cell.2009.12.002. PMID: 20064375
  • Li G, Margueron R, Ku M, et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 2010;24(4):368–380. doi:10.1101/gad.188641010.1101/gad.1886410. PMID: 20123894
  • Chamberlain SJ, Yee D, Magnuson T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells. 2008;26(6):1496–1505. doi:10.1634/stemcells.2008-010210.1634/stemcells.2008-0102. PMID: 18403752
  • Galonska C, Ziller MJ, Karnik R, et al. Ground state conditions induce rapid reorganization of core pluripotency factor binding before global epigenetic reprogramming. Cell Stem Cell. 2015;17(4):462–470. doi:10.1016/j.stem.2015.07.00510.1016/j.stem.2015.07.005. PMID: 26235340
  • Weinberger L, Ayyash M, Novershtern N, et al. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol. 2016;17(3):155–169. doi:10.1038/nrm.2015.2810.1038/nrm.2015.28. PMID: 26860365
  • Sanulli S, Justin N, Teissandier A, et al. Jarid2 Methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol Cell. 2015;57(5):769–783. doi:10.1016/j.molcel.2014.12.02010.1016/j.molcel.2014.12.020. PMID: 25620564
  • Collinson, A., et al., Deletion of the Polycomb-Group Protein EZH2 Leads to Compromised Self-Renewal and Differentiation Defects in Human Embryonic Stem Cells. Cell Rep. 2016;17(10):2700–2714. doi:10.1016/j.celrep.2016.11.03210.1016/j.celrep.2016.11.032. PMID: 27926872
  • Young JE, Goldstein LSB. Alzheimer's disease in a dish: promises and challenges of human stem cell models. Hum Mol Genet. 2012;21(R1):R82–R89. doi:10.1093/hmg/dds31910.1093/hmg/dds319. PMID: 22865875
  • Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. (80-) 2002;298(5595.): doi:10.1126/science.107699710.1126/science.1076997.
  • Czermin B, Melfi R, McCabe D, et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell. 2002;111(2):185196. doi:10.1016/S0092-8674(02)00975-310.1016/S0092-8674(02)00975-3. PMID: 12408863
  • Kirmizis A, Bartley SM, Kuzmichev A, et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 2004;18(13):1592–1605. doi:10.1101/gad.120020410.1101/gad.1200204. PMID: 15231737
  • Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004;15(1):57–67. doi:10.1016/j.molcel.2004.06.02010.1016/j.molcel.2004.06.020. PMID: 15225548
  • Margueron R, Li G, Sarma K, et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 2008;32(4):503–518. doi:10.1016/j.molcel.2008.11.00410.1016/j.molcel.2008.11.004. PMID: 19026781
  • Shen X, Kim W, Fujiwara Y, et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell. 2009;139(7):1303–1314. doi:10.1016/j.cell.2009.12.00310.1016/j.cell.2009.12.003. PMID: 20064376
  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, et al. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002;16(22):2893–2905. doi:10.1101/gad.103590210.1101/gad.1035902. PMID: 12435631
  • Bernstein E, Duncan EM, Masui O, et al. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol. 2006;26(7):2560–2569. doi:10.1128/MCB.26.7.2560-2569.200610.1128/MCB.26.7.2560-2569.2006. PMID: 16537902
  • Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–353. doi:10.1038/nature0473310.1038/nature04733. PMID: 16625203
  • Bracken AP, Dietrich N, Pasini D, et al. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006;20(9):1123–1136. doi:10.1101/gad.38170610.1101/gad.381706. PMID: 16618801
  • Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006;125(2):301–313. doi:10.1016/j.cell.2006.02.04310.1016/j.cell.2006.02.043. PMID: 16630818
  • Schwartz YB, Kahn TG, Nix DA, et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet. 2006;38(6):700–705. doi:10.1038/ng181710.1038/ng1817. PMID: 16732288
  • Squazzo SL, O'Geen H, Komashko VM, et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 2006;16(7):890–900. doi:10.1101/gr.530660610.1101/gr.5306606. PMID: 16751344
  • Landeira D, Sauer S, Poot R, et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat Cell Biol. 2010;12(6):618–624. doi:10.1038/ncb206510.1038/ncb2065. PMID: 20473294
  • Takeuchi T, Watanabe Y, Takano-Shimizu T, et al. Roles ofjumonji andjumonji family genes in chromatin regulation and development. Dev Dyn. 2006;235(9):2449–2459. doi:10.1002/dvdy.2085110.1002/dvdy.20851. PMID: 16715513

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.