3,083
Views
29
CrossRef citations to date
0
Altmetric
Reviews

The Capicua tumor suppressor: a gatekeeper of Ras signaling in development and cancer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 702-711 | Received 07 Nov 2017, Accepted 03 Mar 2018, Published online: 18 May 2018

References

  • Jiménez G, Guichet A, Ephrussi A, et al. Relief of gene repression by Torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev. 2000;14:224–231. PMID: 10652276.
  • Jiménez G, Shvartsman SY, Paroush Z. The Capicua repressor – a general sensor of RTK signaling in development and disease. J Cell Sci. 2012;125:1383–1389. PMID: 22526417. doi:10.1242/jcs.092965.
  • Papagianni A, Forés M, Shao W, et al. Capicua controls Toll/IL-1 signaling targets independently of RTK regulation. Proc Natl Acad Sci USA. 2018;115:1807–1812. PMID: 29432195. doi:10.1073/pnas.1713930115.
  • Roch F, Jiménez G, Casanova J. EGFR signaling inhibits Capicua-dependent repression during specification of Drosophila wing veins. Development. 2002;129:993–1002. PMID: 11861482.
  • Astigarraga S, Grossman R, Díaz-Delfín J, et al. A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J. 2007;26:668–677. PMID: 17255944. doi:10.1038/sj.emboj.7601532.
  • Tseng AS, Tapon N, Kanda H, et al. Capicua regulates cell proliferation downstream of the receptor tyrosine kinase/ras signaling pathway. Curr Biol. 2007;17:728–733. PMID: 17398096. doi:10.1016/j.cub.2007.03.023.
  • Lim B, Samper N, Lu H, et al. Kinetics of gene derepression by ERK signaling. Proc Natl Acad Sci USA. 2013;110:10330–10335. PMID: 23733957. doi:10.1073/pnas.1303635110.
  • Jin Y, Ha N, Forés M, et al. EGFR/Ras signaling controls Drosophila intestinal stem cell proliferation via Capicua-regulated genes. PLoS Genet. 2015;11:e1005634. PMID: 26683696. doi:10.1371/journal.pgen.1005634.
  • Grimm O, Sanchez Zini V, Kim Y, et al. Torso RTK controls Capicua degradation by changing its subcellular localization. Development. 2012;139:3962–3968. PMID: 23048183. doi:10.1242/dev.084327.
  • Herranz H, Hong X, Cohen SM. Mutual repression by bantam miRNA and Capicua links the EGFR/MAPK and Hippo pathways in growth control. Curr Biol. 2012;22:651–657. PMID: 22445297. doi:10.1016/j.cub.2012.02.050.
  • Pascual J, Jacobs J, Sansores-Garcia L, et al. Hippo reprograms the transcriptional response to Ras signaling. Dev Cell. 2017;42:667–680. PMID: 28950103. doi:10.1016/j.devcel.2017.08.013.
  • Ajuria L, Nieva C, Winkler C, et al. Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila. Development. 2011;138:915–924. PMID: 21270056. doi:10.1242/dev.057729.
  • Samee MA, Lim B, Samper N, et al. A systematic ensemble approach to thermodynamic modeling of gene expression from sequence data. Cell Syst. 2015;1:396–407. PMID: 27136354. doi:10.1016/j.cels.2015.12.002.
  • Liang HL, Nien CY, Liu HY, et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature. 2008;456:400–3. PMID: 18931655. doi:10.1038/nature07388.
  • Löhr U, Chung HR, Beller M, et al. Antagonistic action of Bicoid and the repressor Capicua determines the spatial limits of Drosophila head gene expression domains. Proc Natl Acad Sci USA. 2009;106:21695–21700. PMID: 19959668. doi:10.1073/pnas.0910225106.
  • Nolo R, Morrison CM, Tao C, et al. The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol. 2006;16:1895–904. PMID: 16949821. doi:10.1016/j.cub.2006.08.057.
  • Oh H, Irvine KD. Cooperative regulation of growth by Yorkie and Mad through bantam. Dev Cell. 2011;20:109–22. PMID: 21238929. doi:10.1016/j.devcel.2010.12.002.
  • Yang L, Paul S, Trieu KG, et al. Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua. Proc Natl Acad Sci USA. 2016;113:10583–10588. PMID: 27601662. doi:10.1073/pnas.1609417113.
  • Degoutin JL, Milton CC, Yu E, et al. Riquiqui and minibrain are regulators of the hippo pathway downstream of Dachsous. Nat Cell Biol. 2013;15:1176–85. PMID: 23955303. doi:10.1038/ncb2829.
  • Krivy K, Bradley-Gill MR, Moon NS. Capicua regulates proliferation and survival of RB-deficient cells in Drosophila. Biol Open. 2013;2:183–190. PMID: 23429853. doi:10.1242/bio.20123277.
  • Lee CJ, Chan WI, Cheung M, et al. CIC, a member of a novel subfamily of the HMG-box superfamily, is transiently expressed in developing granule neurons. Brain Res Mol Brain Res. 2002;106:151–156. PMID: 12393275. doi:10.1016/S0169-328X(02)00439-4.
  • Lee Y, Fryer JD, Kang H, et al. ATXN1 protein family and CIC regulate extracellular matrix remodeling and lung alveolarization. Dev Cell. 2011;21:746–757. PMID: 22014525. doi:10.1016/j.devcel.2011.08.017.
  • Lam YC, Bowman AB, Jafar-Nejad P, et al. ATXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell. 2006;127:1335–1347. PMID: 17190598. doi:10.1016/j.cell.2006.11.038.
  • Forés M, Ajuria L, Samper N, et al. Origins of context-dependent gene repression by capicua. PLoS Genet. 2015;11:e1004902. PMID: 25569482. doi:10.1371/journal.pgen.1004902.
  • Kim E, Park S, Choi N, et al. Deficiency of Capicua disrupts bile acid homeostasis. Sci Rep. 2015;5:8272. PMID: 25653040. doi:10.1038/srep08272.
  • Kim E, Lu HC, Zoghbi HY, et al. Structural basis of protein complex formation and reconfiguration by polyglutamine disease protein Ataxin-1 and Capicua. Genes Dev. 2013;27:590–5. PMID: 23512657. doi:10.1101/gad.212068.112.
  • Futran AS, Kyin S, Shvartsman SY, et al. Mapping the binding interface of ERK and transcriptional repressor Capicua using photocrosslinking. Proc Natl Acad Sci USA. 2015;112:8590–8595. PMID: 26124095. doi:10.1073/pnas.1501373112.
  • Kawamura-Saito M, Yamazaki Y, Kaneko K, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15:2125–2137. PMID: 16717057. doi:10.1093/hmg/ddl136.
  • Forés M, Simón-Carrasco L, Ajuria L, et al. A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer. PLoS Genet. 2017;13:e1006622. PMID: 28278156. doi:10.1371/journal.pgen.1006622.
  • Dissanayake K, Toth R, Blakey J, et al. ERK/p90(RSK)/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor capicua. Biochem J. 2011;433:515–525. PMID: 21087211. doi:10.1042/BJ20101562.
  • Banfi S, Servadio A, Chung MY, et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet. 1994;7:513–520. PMID: 7951322. doi:10.1038/ng0894-513.
  • Crespo-Barreto J, Fryer JD, Shaw CA, et al. Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet. 2010;6:e1001021. PMID: 20628574. doi:10.1371/journal.pgen.1001021.
  • Tsai CC, Kao HY, Mitzutani A, et al. Ataxin 1, a SCA1 neurodegereative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc Natl Acad Sci USA. 2004;101:4047–4052. PMID: 15016912. doi:10.1073/pnas.0400615101.
  • Fryer JD, Yu P, Mandel-Brehm C, et al. Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science. 2011;334:690–693. PMID: 22053053. doi:10.1126/science.1212673.
  • Lasagna-Reeves CA, Rousseaux MW, Guerrero-Muñoz MJ, et al. A native interactor scaffolds and stabilizes ATAXIN-1 oligomers in SCA1. Elife. 2015;4:e07558. doi:10.7554/eLife.07558. PMID: 25988806.
  • Park J, Al-Ramahi I, Tan Q, et al. RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity and SCA1. Nature. 2013;498:325–331. PMID: 23719381. doi:10.1038/nature12204.
  • Simón-Carrasco L, Graña O, Salmón M, et al. Inactivation of Capicua in adult mice causes T-cell lymphoblastic lymphoma. Genes Dev. 2017;31:1456–1468. PMID: 28827401. doi:10.1101/gad.300244.117.
  • Tan Q, Brunetti L, Rousseaux MWC, et al. Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proc Natl Acad Sci USA. 2018;115:E1511–E1519. PMID: 29382756. doi:10.1073/pnas.1716452115.
  • Lu HC, Tan Q, Rousseaux MW, et al. Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans. Nat Genet. 2017;49:527–536. PMID: 28288114. doi:10.1038/ng.3808.
  • Park S, Lee S, Lee CG, et al. Capicua deficiency induces autoimmunity and promotes follicular helper T cell differentiation via derepression of ETV5. Nat Commun. 2017;8:16037. PMID: 28855737. doi:10.1038/ncomms16037.
  • Kim E, Kim D, Lee JS, et al. Capicua suppresses hepatocellular carcinoma progression by controlling ETV4-MMP1 axis. Hepatology. 2017;Dec 18;doi:10.1002/hep.29738. PMID: 29251790. doi:10.1002/hep.29738.
  • Yang R, Chen LH, Hansen LJ, et al. Cic loss promotes gliomagenesis via aberrant neural stem cell proliferation and differentiation. Cancer Res. 2017;doi:10.1158/0008-5472.CAN-17-1018. PMID: 28939681.
  • Vissers LE, de Ligt J, Gilissen C, et al. A de novo paradigm for mental retardation. Nat Genet. 2010;42:1109–1112. PMID: 21076407. doi:10.1038/ng.712.
  • Athanasakis E, Licastro D, Faletra F, et al. Next generation sequencing in nonsyndromic intellectual disability: from a negative molecular karyotype to a possible causative mutation detection. Am J Med Genet A. 2014;164A:170–176. PMID: 24307393. doi:10.1002/ajmg.a.36274.
  • Drosten M, Dhawahir A, Sum EY, et al. Genetic analysis of Ras signaling pathways in cell proliferation, migration and survival. EMBO J. 2010;29:1091–1104. PMID: 20150892. doi:10.1038/emboj.2010.7.
  • Drosten M, Sum EY, Lechuga CG, et al. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proc Natl Acad Sci USA. 2014;111:15155–15160. PMID: 25288756. doi:10.1073/pnas.1417549111.
  • Lechuga CG, Simón-Carrasco L, Jacob HK, et al. Genetic validation of cell proliferation via Ras-independent activation of the Raf/Mek/Erk pathway. Methods Mol Biol. 2017;1487:269–276. PMID: 27924574. doi:10.1007/978-1-4939-6424-6_20.
  • Le Gallic L, Sgouras D, Beal G Jr, et al. Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol Cell Biol. 1999;19:4121–4133. PMID: 10330152. doi:10.1128/MCB.19.6.4121.
  • Maki K, Arai H, Waga K, et al. Leukemia-related transcription factor TEL is negatively regulated through extracellular signal-regulated kinase-induced phosphorylation. Mol Cell Biol. 2004;24:3227–3237. PMID: 15060146. doi:10.1128/MCB.24.8.3227-3237.2004.
  • Bettegowda C, Agrawal N, Jiao Y, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science. 2011;333:1453–1455. PMID: 21817013. doi:10.1126/science.1210557.
  • Yip S, Butterfield YS, Morozova O, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226:7–16. PMID: 22072542. doi:10.1002/path.2995.
  • Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA. 2013;110:6021–6026. PMID: 23530248. doi:10.1073/pnas.1303607110.
  • Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–744. PMID: 19935646. doi:10.1038/nature08617.
  • Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30. PMID: 21251613. doi:10.1016/j.ccr.2010.12.014.
  • Chittaranjan S, Chan S, Yang C, et al. Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity. Oncotarget. 2014;5:7960–7979. PMID: 25277207. doi:10.18632/oncotarget.2401.
  • Suzuki H, Aoki K, Chiba K, et al. Mutational landscape and clonal architecture in grade II and grade III gliomas. Nat Genet. 2015;47:458–468. PMID: 25848751. doi:10.1038/ng.3273.
  • Aihara K, Mukasa A, Nagae G, et al. Genetic and epigenetic stability of oligodendrogliomas at recurrence. Acta Neuropathol Commun. 2017;5:18. PMID: 28270234. doi:10.1186/s40478-017-0422-z.
  • Gleize V, Alentorn A, Connen de Kérillis L, et al. CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas. Ann Neurol. 2015;78:355–374. PMID: 26017892. doi:10.1002/ana.24443.
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404. PMID: 22588877. doi:10.1158/2159-8290.CD-12-0095.
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical prolfiles using cBioPortal. Sci Signal. 2013;6:l1. PMID: 23550210. doi:10.1126/scisignal.2004088.
  • Okimoto RA, Breitenbuecher F, Olivas VR, et al. Inactivation of Capicua drives cancer metastasis. Nat Genet. 2017;49:87–96. PMID: 27869830. doi:10.1038/ng.3728.
  • Okimoto RA, Bivona TG. Metastasis: From head to tail. Cell Cycle. 2017;16:487–488. PMID: 28055306. doi:10.1080/15384101.2016.1271636.
  • Seim I, Jeffery PL, Thomas PB, et al. Whole-genome sequence of the metastatic PC3 and LNCaP human prostate cancer cell lines. G3 (Bethesda). 2017;7:1731–1741. PMID: 28413162.
  • Sturm D, Orr BA, Toprak UH, et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell. 2016;164:1060–1072. PMID: 26919435. doi:10.1016/j.cell.2016.01.015.
  • Drosten M, Simón-Carrasco L, Hernández-Porras I, et al. H-Ras and K-Ras oncoproteins induce different tumor spectra when driven by the same regulatory sequences. Cancer Res. 2017;77:707–718. PMID: 27872088. doi:10.1158/0008-5472.CAN-16-2925.
  • Von Lintig FC, Huvar I, Law P, Diccianni MB, et al. Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. Clin Cancer Res. 2000;6:1804–1810. PMID: 10815901.
  • Oshima K, Khiabanian H, da Silva-Almeida AC, et al. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2016;113:11306–11311. PMID: 27655895. doi:10.1073/pnas.1608420113.
  • Dail M, Li Q, McDaniel A, et al. Mutant Ikzf1, KrasG12D, and Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted agents. Proc Natl Acad Sci USA. 2010;107:5106–5111. PMID: 20194733. doi:10.1073/pnas.1001064107.
  • Wang B, Krall EB, Aguirre AJ, et al. ATXN1L, CIC, and ETS transcription factors modulate sensitivity to MAPK pathway inhibition. Cell Rep. 2017;18:1543–1557. PMID: 28178529. doi:10.1016/j.celrep.2017.01.031.
  • Liao S, Davoli T, Leng Y, et al. A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. Genes Dev. 2017;31:184–196. PMID: 28167502. doi:10.1101/gad.291948.116.
  • Mizutani A, Wang L, Rajan H, et al. Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. EMBO J. 2005;24:3339–3351. PMID: 16121196. doi:10.1038/sj.emboj.7600785.
  • Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell. 2006;126:767–74. doi:10.1016/j.cell.2006.07.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.