3,323
Views
38
CrossRef citations to date
0
Altmetric
Review

Histone modifications and the DNA double-strand break response

&
Pages 2399-2410 | Received 04 Aug 2018, Accepted 19 Oct 2018, Published online: 14 Nov 2018

References

  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009 Oct 22;461(7267):1071–1078. PubMed PMID: 19847258; PubMed Central PMCID: PMCPMC2906700.
  • Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 2011 Mar 01;25(5):409–433. PubMed PMID: 21363960; PubMed Central PMCID: PMCPMC3049283.
  • van Attikum H, Gasser SM. Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol. 2009 May;19(5):207–217. PubMed PMID: 19342239.
  • Cao LL, Shen C, Zhu WG. Histone modifications in DNA damage response. Sci China Life Sci. 2016 Mar;59(3):257–270. 10.1007/s11427-016-5011-z. PubMed PMID: 26825946.
  • Dasika GK, Lin SC, Zhao S, et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene. 1999 Dec 20;18(55):7883–7899. PubMed PMID: 10630641.
  • Rossetto D, Truman AW, Kron SJ, et al. Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res. 2010 Sep 15;16(18):4543–4552. 10.1158/1078-0432.CCR-10-0513. PubMed PMID: 20823147; PubMed Central PMCID: PMCPMC2940951.
  • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007 Feb 23;128(4):707–719. PubMed PMID: 17320508.
  • Daley JM, Sung P. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol. 2014 Apr;34(8):1380–1388. PubMed PMID: 24469398; PubMed Central PMCID: PMCPMC3993578.
  • Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014 Jan;15(1):7–18. PubMed PMID: 24326623.
  • Sulli G, Di Micco R, d’Adda Di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer. 2012 Oct;12(10):709–720. PubMed PMID: 22952011.
  • Bonner WM, Redon CE, Dickey JS, et al. GammaH2AX and cancer. Nat Rev Cancer. 2008 Dec;8(12):957–967. PubMed PMID: 19005492; PubMed Central PMCID: PMCPMC3094856.
  • Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998 Mar 06;273(10):5858–5868. PubMed PMID: 9488723.
  • Rogakou EP, Boon C, Redon C, et al. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999 Sep 06;146(5):905–916. PubMed PMID: 10477747; PubMed Central PMCID: PMCPMC2169482.
  • Kim JA, Kruhlak M, Dotiwala F, et al. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol. 2007 Jul 16;178(2):209–218. PubMed PMID: 17635934; PubMed Central PMCID: PMCPMC2064441.
  • Cowell IG, Sunter NJ, Singh PB, et al. gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One. 2007 Oct 24;2(10):e1057. PubMed PMID: 17957241; PubMed Central PMCID: PMCPMC2020439.
  • Iacovoni JS, Caron P, Lassadi I, et al. High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. Embo J. 2010 Apr 21;29(8):1446–1457. PubMed PMID: 20360682; PubMed Central PMCID: PMCPMC2868577.
  • Savic V, Yin B, Maas NL, et al. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol Cell. 2009 May 15;34(3):298–310. PubMed PMID: 19450528; PubMed Central PMCID: PMCPMC2744111.
  • Burma S, Chen BP, Murphy M, et al. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001 Nov 09;276(45):42462–42467. PubMed PMID: 11571274.
  • Stiff T, O’Driscoll M, Rief N, et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004 Apr 01;64(7):2390–2396. PubMed PMID: 15059890.
  • Paull TT, Rogakou EP, Yamazaki V, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10(15):886–895. Jul 27–Aug 10;():. PubMed PMID: 10959836. .
  • Celeste A, Fernandez-Capetillo O, Kruhlak MJ, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003 Jul;5(7):675–679. PubMed PMID: 12792649.
  • Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX. Science. 2002 May 03;296(5569):922–927. PubMed PMID: 11934988; PubMed Central PMCID: PMCPMC4721576.
  • Martin M, Terradas M, Hernandez L, et al. gammaH2AX foci on apparently intact mitotic chromosomes: not signatures of misrejoining events but signals of unresolved DNA damage. Cell Cycle. 2014;13(19):3026–3036. PubMed PMID: 25486563; PubMed Central PMCID: PMCPMC4614418.
  • Chowdhury D, Keogh MC, Ishii H, et al. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 2005 Dec 09;20(5):801–809. PubMed PMID: 16310392.
  • Nakada S, Chen GI, Gingras AC, et al. PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep. 2008 Oct;9(10):1019–1026. PubMed PMID: 18758438; PubMed Central PMCID: PMCPMC2527856.
  • Cha H, Lowe JM, Li H, et al. Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res. 2010 May 15;70(10):4112–4122. PubMed PMID: 20460517; PubMed Central PMCID: PMCPMC2904079.
  • Xiao A, Li H, Shechter D, et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature. 2009 Jan 01;457(7225):57–62. PubMed PMID: 19092802; PubMed Central PMCID: PMCPMC2854499.
  • Cook PJ, Ju BG, Telese F, et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature. 2009 Apr 02;458(7238):591–596. PubMed PMID: 19234442; PubMed Central PMCID: PMCPMC2692521.
  • Fernandez-Capetillo O, Allis CD, Nussenzweig A. Phosphorylation of histone H2B at DNA double-strand breaks. J Exp Med. 2004 Jun 21;199(12):1671–1677. PubMed PMID: 15197225; PubMed Central PMCID: PMCPMC2212807.
  • Cheung WL, Ajiro K, Samejima K, et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell. 2003 May 16;113(4):507–517. PubMed PMID: 12757711.
  • Cheung WL, Turner FB, Krishnamoorthy T, et al. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol. 2005 Apr 12;15(7):656–660. PubMed PMID: 15823538.
  • Gatti M, Pinato S, Maiolica A, et al. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep. 2015 Jan 13;10(2):226–238. PubMed PMID: 25578731.
  • Lou Z, Minter-Dykhouse K, Franco S, et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell. 2006 Jan 20;21(2):187–200. PubMed PMID: 16427009.
  • Kolas NK, Chapman JR, Nakada S, et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science. 2007 Dec 7;318(5856):1637–1640. PubMed PMID: 18006705; PubMed Central PMCID: PMCPMC2430610.
  • Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007 May 25;316(5828):1160–1166. PubMed PMID: 17525332.
  • Wang B, Elledge SJ. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci USA. 2007 Dec 26;104(52):20759–20763. PubMed PMID: 18077395; PubMed Central PMCID: PMCPMC2410075.
  • Huen MS, Grant R, Manke I, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007 Nov 30;131(5):901–914. PubMed PMID: 18001825; PubMed Central PMCID: PMCPMC2149842.
  • Mailand N, Bekker-Jensen S, Faustrup H, et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 2007 Nov 30;131(5):887–900. PubMed PMID: 18001824.
  • Mattiroli F, Vissers JH, van Dijk WJ, et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell. 2012 Sep 14;150(6):1182–1195. PubMed PMID: 22980979.
  • Thorslund T, Ripplinger A, Hoffmann S, et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature. 2015 Nov 19;527(7578):389–393. PubMed PMID: 26503038.
  • Stewart GS, Panier S, Townsend K, et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell. 2009 Feb 6;136(3):420–434. PubMed PMID: 19203578.
  • Doil C, Mailand N, Bekker-Jensen S, et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell. 2009 Feb 06;136(3):435–446. PubMed PMID: 19203579.
  • Wu J, Huen MS, Lu LY, et al. Histone ubiquitination associates with BRCA1-dependent DNA damage response. Mol Cell Biol. 2009 Feb;29(3):849–860. PubMed PMID: 19015238; PubMed Central PMCID: PMCPMC2630672.
  • Ginjala V, Nacerddine K, Kulkarni A, et al. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol. 2011 May;31(10):1972–1982. PubMed PMID: 21383063; PubMed Central PMCID: PMCPMC3133356.
  • Ismail IH, Andrin C, McDonald D, et al. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol. 2010 Oct 04;191(1):45–60. PubMed PMID: 20921134; PubMed Central PMCID: PMCPMC2953429.
  • Gudjonsson T, Altmeyer M, Savic V, et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell. 2012 Aug 17;150(4):697–709. PubMed PMID: 22884692.
  • Mosbech A, Lukas C, Bekker-Jensen S, et al. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J Biol Chem. 2013 Jun 07;288(23):16579–16587. PubMed PMID: 23615962; PubMed Central PMCID: PMCPMC3675593.
  • Yan Q, Dutt S, Xu R, et al. BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol Cell. 2009 Oct 9;36(1):110–120. PubMed PMID: 19818714; PubMed Central PMCID: PMCPMC2913878.
  • Sanders SL, Portoso M, Mata J, et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell. 2004 Nov 24;119(5):603–614. PubMed PMID: 15550243.
  • Botuyan MV, Lee J, Ward IM, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006 Dec 29;127(7):1361–1373. PubMed PMID: 17190600; PubMed Central PMCID: PMCPMC1804291.
  • Pei H, Zhang L, Luo K, et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature. 2011 Feb 3;470(7332):124–128. PubMed PMID: 21293379; PubMed Central PMCID: PMCPMC3064261.
  • Tuzon CT, Spektor T, Kong X, et al. Concerted activities of distinct H4K20 methyltransferases at DNA double-strand breaks regulate 53BP1 nucleation and NHEJ-directed repair. Cell Rep. 2014 Jul 24;8(2):430–438. PubMed PMID: 25001286; PubMed Central PMCID: PMCPMC4134327.
  • Oda H, Hubner MR, Beck DB, et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol Cell. 2010 Nov 12;40(3):364–376. PubMed PMID: 21035370; PubMed Central PMCID: PMCPMC2999913.
  • Wysocki R, Javaheri A, Allard S, et al. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol. 2005 Oct;25(19):8430–8443. PubMed PMID: 16166626; PubMed Central PMCID: PMCPMC1265753.
  • Huyen Y, Zgheib O, Ditullio RA Jr. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 2004 Nov 18;432(7015):406–411. PubMed PMID: 15525939.
  • Wakeman TP, Wang Q, Feng J, et al. Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. Embo J. 2012 May 2;31(9):2169–2181. PubMed PMID: 22373577; PubMed Central PMCID: PMCPMC3343460.
  • Rea S, Eisenhaber F, O’Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000 Aug 10;406(6796):593–599. PubMed PMID: 10949293.
  • O’Carroll D, Scherthan H, Peters AH, et al. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol. 2000 Dec;20(24):9423–9433. PubMed PMID: 11094092; PubMed Central PMCID: PMCPMC102198.
  • Krishnan S, Horowitz S, Trievel RC. Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Chembiochem. 2011 Jan 24;12(2):254–263. PubMed PMID: 21243713.
  • Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, et al. DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci USA. 2014 Jun 24;111(25):9169–9174. PubMed PMID: 24927542; PubMed Central PMCID: PMCPMC4078803.
  • Sun Y, Jiang X, Xu Y, et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol. 2009 Nov;11(11):1376–1382. PubMed PMID: 19783983; PubMed Central PMCID: PMCPMC2783526.
  • Sone K, Piao L, Nakakido M, et al. Critical role of lysine 134 methylation on histone H2AX for gamma-H2AX production and DNA repair. Nat Commun. 2014 Dec 9;5:5691. PubMed PMID: 25487737; PubMed Central PMCID: PMCPMC4268694.
  • Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell. 2000 Aug 18;102(4):463–473. PubMed PMID: 10966108.
  • Das C, Lucia MS, Hansen KC, et al. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 2009 May 7;459(7243):113–117. PubMed PMID: 19270680; PubMed Central PMCID: PMCPMC2756583.
  • Yuan J, Pu M, Zhang Z, et al. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle. 2009 Jun 1;8(11):1747–1753. PubMed PMID: 19411844; PubMed Central PMCID: PMCPMC2776713.
  • Celic I, Masumoto H, Griffith WP, et al. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol. 2006 Jul 11;16(13):1280–1289. PubMed PMID: 16815704.
  • Masumoto H, Hawke D, Kobayashi R, et al. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature. 2005 Jul 14;436(7048):294–298. PubMed PMID: 16015338.
  • Vempati RK, Jayani RS, Notani D, et al. p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem. 2010 Sep 10;285(37):28553–28564. PubMed PMID: 20587414; PubMed Central PMCID: PMCPMC2937881.
  • Miller KM, Tjeertes JV, Coates J, et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol. 2010 Sep;17(9):1144–1151. PubMed PMID: 20802485; PubMed Central PMCID: PMCPMC3018776.
  • Qian MX, Pang Y, Liu CH, et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell. 2013 May 23;153(5):1012–1024. PubMed PMID: 23706739; PubMed Central PMCID: PMCPMC3983474.
  • Sharma GG, So S, Gupta A, et al. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol. 2010 Jul;30(14):3582–3595. PubMed PMID: 20479123; PubMed Central PMCID: PMCPMC2897562.
  • Smith ER, Cayrou C, Huang R, et al. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol. 2005 Nov;25(21):9175–9188. PubMed PMID: 16227571; PubMed Central PMCID: PMCPMC1265810.
  • Gupta A, Sharma GG, Young CS, et al. Involvement of human MOF in ATM function. Mol Cell Biol. 2005 Jun;25(12):5292–5305. PubMed PMID: 15923642; PubMed Central PMCID: PMCPMC1140595.
  • Gupta A, Hunt CR, Hegde ML, et al. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell Rep. 2014 Jul 10;8(1):177–189. PubMed PMID: 24953651; PubMed Central PMCID: PMCPMC4300955.
  • Li X, Corsa CA, Pan PW, et al. MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol. 2010 Nov;30(22):5335–5347. PubMed PMID: 20837706; PubMed Central PMCID: PMCPMC2976376.
  • Ikura T, Tashiro S, Kakino A, et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol. 2007 Oct;27(20):7028–7040. PubMed PMID: 17709392; PubMed Central PMCID: PMCPMC2168918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.