877
Views
8
CrossRef citations to date
0
Altmetric
Review

The role of autophagy in abdominal aortic aneurysm: protective but dysfunctional

, , , , , & show all
Pages 2749-2759 | Received 27 May 2020, Accepted 08 Sep 2020, Published online: 22 Sep 2020

References

  • de Duve D. The peroxisome: a new cytoplasmic organelle[J]. Proc R Soc Lond B Biol Sci. 1969;173(1030):71–83.
  • Mizushima N, Levine B, AM C, et al. Autophagy fights disease through cellular self-digestion[J]. Nature. 2008;451(7182):1069–1075.
  • Bento CF, Renna M, Ghislat G, et al. Mammalian autophagy: how does it work?[J]. Annu Rev Biochem. 2016;85:685–713.
  • Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms[J]. Autophagy. 2018;14(2):207–215.
  • Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes[J]. Embo J. 2017;36(13):1811–1836.
  • Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism[J]. Nat Rev Mol Cell Biol. 2015;16(8):461–472.
  • Zaffagnini G, Martens S. Mechanisms of selective autophagy[J]. J Mol Biol. 2016;428(9 Pt A):1714–1724.
  • Shaid S, Brandts CH, Serve H, et al. Ubiquitination and selective autophagy[J]. Cell Death Differ. 2013;20(1):21–30.
  • Wu MY, Song JX, Wang SF, et al. Selective autophagy: the new player in the fight against neurodegenerative diseases?[J]. Brain Res Bull. 2018;137:79–90.
  • Yan Y, Chen X, Wang X, et al. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer[J]. J Exp Clin Cancer Res. 2019;38(1):171.
  • Ren J, Zhang Y. Targeting autophagy in aging and aging-related cardiovascular diseases[J]. Trends Pharmacol Sci. 2018;39(12):1064–1076.
  • Gonzalez CD, Lee MS, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus[J]. Autophagy. 2011;7(1):2–11.
  • Haq S, Grondin J, Banskota S, et al. Autophagy: roles in intestinal mucosal homeostasis and inflammation[J]. J Biomed Sci. 2019;26(1):19.
  • Behrends C, Sowa ME, Gygi SP, et al. Network organization of the human autophagy system[J]. Nature. 2010;466(7302):68–76.
  • Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins[J]. Autophagy. 2010;6(6):764–776.
  • Schaaf MB, Keulers TG, Vooijs MA, et al. LC3/GABARAP family proteins: autophagy-(un)related functions[J]. Faseb J. 2016;30(12):3961–3978.
  • Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. Embo J. 2000;19(21):5720–5728.
  • Golledge J, Muller J, Daugherty A, et al. Abdominal aortic aneurysm: pathogenesis and implications for management[J]. Arterioscler Thromb Vasc Biol. 2006;26(12):2605–2613.
  • Liao S, Curci JA, Kelley BJ, et al. Accelerated replicative senescence of medial smooth muscle cells derived from abdominal aortic aneurysms compared to the adjacent inferior mesenteric artery[J]. J Surg Res. 2000;92(1):85–95.
  • Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments[J]. Nat Rev Cardiol. 2019;16(4):225–242.
  • Ren J, Sowers JR, Zhang Y, et al. Autophagy, and cardiovascular aging: from pathophysiology to therapeutics[J]. Trends Endocrinol Metab. 2018;29(10):699–711.
  • Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging[J]. Aging Cell. 2018;17:1.
  • Tyutyunyk-Massey L, Gewirtz DA. Roles of autophagy in breast cancer treatment: target, bystander or benefactor[J]. Semin Cancer Biol. 2019. DOI:10.1016/j.semcancer.2019.11.008
  • Wang Z, Liu B, Zhu J, et al. Nicotine-mediated autophagy of vascular smooth muscle cell accelerates atherosclerosis via nAChRs/ROS/NF-κB signaling pathway[J]. Atherosclerosis. 2019;284:1–10.
  • Zheng YH, Tian C, Meng Y, et al. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells[J]. J Cell Physiol. 2012;227(1):127–135.
  • Li G, Qin L, Wang L, et al. Inhibition of the mTOR pathway in abdominal aortic aneurysm: implications of smooth muscle cell contractile phenotype, inflammation, and aneurysm expansion[J]. Am J Physiol Heart Circ Physiol. 2017;312(6):H1110–H1119.
  • Alfaras I, Di Germanio C, Bernier M, et al. Pharmacological strategies to retard cardiovascular aging[J]. Circ Res. 2016;118(10):1626–1642.
  • Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging[J]. Cell. 2011;146(5):682–695.
  • Madeo F, Zimmermann A, Maiuri MC, et al. Essential role for autophagy in life span extension[J]. J Clin Invest. 2015;125(1):85–93.
  • Grootaert MO, da Costa Martins PA, Bitsch N, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis[J]. Autophagy. 2015;11(11):2014–2032.
  • Kim SG, Sung JY, Kim JR, et al. Nifedipine-induced AMPK activation alleviates senescence by increasing autophagy and suppressing of Ca(2+) levels in vascular smooth muscle cells[J]. Mech Ageing Dev. 2020;190:111314.
  • Salabei JK, Hill BG. Implications of autophagy for vascular smooth muscle cell function and plasticity[J]. Free Radic Biol Med. 2013;65:693–703.
  • LaRocca TJ, Gioscia-Ryan RA, Hearon CM Jr., et al. The autophagy enhancer spermidine reverses arterial aging[J]. Mech Ageing Dev. 2013;134(7–8):314–320.
  • Li X, Zhao G, Zhang J, et al. Prevalence and trends of the abdominal aortic aneurysms epidemic in general population–a meta-analysis[J]. PLoS ONE. 2013;8(12):e81260.
  • Park J, Shin H, Song H, et al. Autophagic regulation in steroid hormone-responsive systems[J]. Steroids. 2016;115(undefined):177–181.
  • Schiebler TH, Danner KG. The effect of sex hormones on the proximal tubules in the rat kidney[J]. Cell Tissue Res. 1978;192(3):527–549.
  • Totta P, Busonero C, Leone S, et al. Dynamin II is required for 17β-estradiol signaling and autophagy-based ERα degradation[J]. Sci Rep. 2016;6(undefined):23727.
  • Yang YH, Chen K, Li B, et al. Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway[J]. Apoptosis. 2013;18(11):1363–1375.
  • Kimura A, Ishida Y, Nosaka M, et al. Exaggerated arsenic nephrotoxicity in female mice through estrogen-dependent impairments in the autophagic flux[J]. Toxicology. 2016;339(undefined):9–18.
  • Luo H, Liu M, Luo S, et al. Dynamic monitoring of GPER-mediated estrogenic effects in breast cancer associated fibroblasts: an alternative role of estrogen in mammary carcinoma development[J]. Steroids. 2016;112(undefined):1–11.
  • Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo[J]. Cell Metab. 2007;6(6):458–471.
  • Sisci D, Maris P, Grazia Cesario M, et al. The estrogen receptor α is the key regulator of the bifunctional role of FoxO3a transcription factor in breast cancer motility and invasiveness[J]. Cell Cycle. 2013;12(21):3405–3420.
  • Zekas E, Prossnitz ER. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER[J]. BMC Cancer. 2015;15(undefined):702.
  • Sugamura K, Keaney JF Jr. Nicotine: linking smoking to abdominal aneurysms[J]. Nat Med. 2012;18(6):856–858.
  • Wang S, Zhang C, Zhang M, et al. Activation of AMP-activated protein kinase alpha2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo[J]. Nat Med. 2012;18(6):902–910.
  • Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol. 2018;19(2):121–135.
  • Levine B, Yuan J. Autophagy in cell death: an innocent convict?[J]. J Clin Invest. 2005;115(10):2679–2688.
  • JL C, CL S, HJ S, et al. Inflammatory aneurysms of the aorta[J]. J Vasc Surg. 1985;2(1):113–124.
  • Aiello MR, Cohen WN. Inflammatory aneurysm of the abdominal aorta[J]. J Comput Assist Tomogr. 1980;4(2):265–267.
  • Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis[J]. Circulation. 2002;105(9):1135–1143.
  • Curci JA, Liao S, Huffman MD, et al. Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms[J]. J Clin Invest. 1998;102(11):1900–1910.
  • KG J, DJ B, LC B, et al. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms[J]. Circulation. 2001;103(18):2260–2265.
  • Harrison SC, Smith AJ, Jones GT, et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm[J]. Eur Heart J. 2013;34(48):3707–3716.
  • Jacquel A, Obba S, Boyer L, et al. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions[J]. Blood. 2012;119(19):4527–4531.
  • Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its applications for cancer[J]. Autophagy. 2014;10(2):192–200.
  • Razani B, Feng C, Coleman T, et al. Autophagy links inflammasomes to atherosclerotic progression[J]. Cell Metab. 2012;15(4):534–544.
  • Yang Y, Wang J, Guo S, et al. Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS-AMPK-mTORC1-autophagy pathway[J]. Redox Biol. 2020;32:101501.
  • Yodoi K, Yamashita T, Sasaki N, et al. Foxp3+ regulatory T cells play a protective role in angiotensin II-induced aortic aneurysm formation in mice[J]. Hypertension. 2015;65(4):889–895.
  • Wei J, Long L, Yang K, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis[J]. Nat Immunol. 2016;17(3):277–285.
  • Rush C, Nyara M, JV M, et al. Whole genome expression analysis within the angiotensin II-apolipoprotein E deficient mouse model of abdominal aortic aneurysm[J]. BMC Genomics. 2009;10(undefined):298.
  • JM S, Hsu M, J A, et al. Transcriptional profiling and network analysis of the murine angiotensin II-induced abdominal aortic aneurysm[J]. Physiol Genomics. 2011;43(17):993–1003.
  • Golledge J, Norman PE. Atherosclerosis and abdominal aortic aneurysm: cause, response, or common risk factors?[J]. Arterioscler Thromb Vasc Biol. 2010;30(6):1075–1077.
  • BR K, Bäck M, ML B-P, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications[J]. Eur Heart J. 2014;35(43):3013–3020, 3020a-3020d.
  • MA D, MK S, Zhao S, et al. Background differences in baseline and stimulated MMP levels influence abdominal aortic aneurysm susceptibility[J]. Atherosclerosis. 2015;243(2):621–629.
  • Brichkina A, DV B. WIP-ing out atherosclerosis with autophagy[J]. Autophagy. 2012;8(10):1545–1547.
  • Ouimet M, Marcel YL. Regulation of lipid droplet cholesterol efflux from macrophage foam cells[J]. Arterioscler Thromb Vasc Biol. 2012;32(3):575–581.
  • Liao X, JC S, Wang Y, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis[J]. Cell Metab. 2012;15(4):545–553.
  • Filomeni G, De ZD, Cecconi F, et al. Oxidative stress and autophagy[J]. Antioxid Redox Signal. 2006;8(null):152–162.
  • Pi S, Mao L, Chen J, et al. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis[J]. Autophagy. 2020;1741202:1–21.
  • De Meyer GR, Grootaert MO, Michiels CF, et al. Autophagy in vascular disease[J]. Circ Res. 2015;116(3):468–479.
  • Siasos G, Mourouzis K, Oikonomou E, et al. The role of endothelial dysfunction in aortic aneurysms[J]. Curr Pharm Des. 2015;21(28):4016–4034.
  • Arzani A, GY S, RLA D, et al. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms[J]. Am J Physiol Heart Circ Physiol. 2014;307(12):H1786–1795.
  • Tong J, GAJ H. Structure, mechanics, and histology of intraluminal thrombi in abdominal aortic aneurysms[J]. Ann Biomed Eng. 2015;43(7):1488–1501.
  • Fontaine V, Touat Z, EMV M, et al. Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus[J]. Am J Pathol. 2004;164(6):2077–2087.
  • LP H, BH G, PW C, et al. Ultrasonic evaluation of abdominal aortic thrombus[J]. J Ultrasound Med. 1982;1(8):315–318.
  • Kazi M, Thyberg J, PM R, et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall[J]. J Vasc Surg. 2003;38(6):1283–1292.
  • DA V, PC L, DH W, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening[J]. J Vasc Surg. 2001;34(2):291–299.
  • GW S, NJ A, JM VB, et al. Experimental study of the influence of endoleak size on pressure in the aneurysm sac and the consequences of thrombosis[J]. Br J Surg. 2000;87(1):71–78.
  • SJ H, JD C, KM C, et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm[J]. J Vasc Surg. 2018;67(4):1051–1058.e1051.
  • Koole D, HJ Z, Schoneveld A, et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity[J]. J Vasc Surg. 2013;57(1):77–83.
  • Luo XL, Jiang JY, Huang Z, et al. Autophagic regulation of platelet biology[J]. J Cell Physiol. 2019;234:14483–14488.
  • Jiang P, Lan Y, Luo J, et al. Rapamycin promoted thrombosis and platelet adhesion to endothelial cells by inducing membrane remodeling[J]. BMC Cell Biol. 2014;15(undefined):7.
  • Wang X, YF F, Liu X, et al. ROS promote Ox-LDL-induced platelet activation by up-regulating autophagy through the inhibition of the PI3K/AKT/mTOR pathway[J]. Cell Physiol Biochem. 2018;50(5):1779–1793.
  • Paul M, Hemshekhar M, Kemparaju K, et al. Aggregation is impaired in starved platelets due to enhanced autophagy and cellular energy depletion[J]. Platelets. 2019;30(4):487–497.
  • Yoshimura K, Morikage N, SK N-F, et al. Current status and perspectives on pharmacologic therapy for abdominal aortic aneurysm[J]. Curr Drug Targets. 2018;19(11):1265–1275.
  • Wang Z, Guo J, Han X, et al. Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE(-/-) mice[J]. Cell Biosci. 2019;9:68.
  • Liu Y, Wang TT, Zhang R, et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice[J]. J Exp Med. 2016;213(11):2473–2488.
  • Piper MD, Bartke A. Diet and aging[J]. Cell Metab. 2008;8(2):99–104.
  • Madeo F, Carmona-Gutierrez D, SJF H, et al. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential[J]. Cell Metab. 2019;29(3):592–610.
  • Piskovatska V, Stefanyshyn N, KB S, et al. Metformin as a geroprotector: experimental and clinical evidence[J]. Biogerontology. 2019;20(1):33–48.
  • Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis[J]. Curr Opin Cell Biol. 2015;33:1–7.
  • Raffort J, Hassen-Khodja R, Jean-Baptiste E, et al. Relationship between metformin and abdominal aortic aneurysm[J]. J Vasc Surg. 2019. DOI:10.1016/j.jvs.2019.08.270
  • Foster JG, Blunt MD, Carter E, et al. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies[J]. Pharmacol Rev. 2012;64(4):1027–1054.
  • Yu J, Liu R, Huang J, et al. Inhibition of Phosphatidylinositol 3-kinease suppresses formation and progression of experimental abdominal aortic aneurysms[J]. Sci Rep. 2017;7(1):15208.
  • Zhang S, Kan X, Li Y, et al. Deficiency of gammadeltaT cells protects against abdominal aortic aneurysms by regulating phosphoinositide 3-kinase/AKT signaling[J]. J Vasc Surg. 2018;67(3):899–908 e891.
  • Hao Q, Chen X, Wang X, et al. Curcumin attenuates angiotensin ii-induced abdominal aortic aneurysm by inhibition of inflammatory response and ERK signaling pathways[J]. Evid Based Complement Alternat Med. 2014;2014(undefined):270930.
  • Peng J, He X, Zhang L, et al. MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway[J]. Int J Mol Med. 2018;42(3):1367–1378.
  • Zhao L, Huang J, Zhu Y, et al. miR-33-5p knockdown attenuates abdominal aortic aneurysm progression via promoting target adenosine triphosphate-binding cassette transporter A1 expression and activating the PI3K/Akt signaling pathway[J]. Perfusion. 2019. DOI:10.1177/0267659119850685:267659119850685
  • Ma X, Yao H, Yang Y, et al. miR-195 suppresses abdominal aortic aneurysm through the TNF-α/NF-κB and VEGF/PI3K/Akt pathway[J]. Int J Mol Med. 2018;41(4):2350–2358.
  • Zhang P, Li Y, Fu Y, et al. Inhibition of autophagy signaling via 3-methyladenine rescued nicotine-mediated cardiac pathological effects and heart dysfunctions[J]. Int J Biol Sci. 2020;16(8):1349–1362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.