2,011
Views
10
CrossRef citations to date
0
Altmetric
Review

It takes two to tango: coupling of Hippo pathway and redox signaling in biological process

, ORCID Icon, , , , & ORCID Icon show all
Pages 2760-2775 | Received 31 Jul 2020, Accepted 13 Sep 2020, Published online: 04 Oct 2020

References

  • Rahal A, Kumar A,Singh, V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;1(1):1–19.
  • Boveris A. Determination of the production of superoxide radicals and hydrogen-peroxide in mitochondria. Methods Enzymol. 1984;105(5):429–435.
  • Halliwell B, Gutteridge JMC. Lipid-peroxidation,oxygen radicals,cell-damage,and antioxidant therapy. Lancet. 1984;1(8391):1396–1397.
  • Johnston AD, Ebert PR. The redox system in c. Elegans, a phylogenetic approach. J Toxicol. 2012;2:e546915.
  • Justice RW, Zilian O, Woods DF, et al. The drosophila tumor-suppressor gene warts encodes a homolog of human myotonic-dystrophy kinase and is required for the control of cell-shape and proliferation. Genes Dev. 1995;9(5):534–546.
  • Harvey KF, Pfleger CM, Hariharan IK. The drosophila mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 2003;114(4):457–467.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
  • Jones DP. Redox theory of aging. Redox Biol. 2015;5:71–79.
  • Pradedova EV, Nimaeva OD, Salyaev RK, et al. Redox processes in biological systems. Russ J Plant Physiol. 2017;64(6):822–832.
  • Lo Conte M, Carroll KS. The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem. 2013;288(37):26480–26488.
  • Yun SB, Oh H, Rhee SG, et al. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32(6):491–509.
  • Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45(7–8):466–472.
  • Loschen G, Azzi A, Flohé L. Mitochondrial H2O2 formation: relationship with energy conservation. FEBS Lett. 1973;33(1):84–88.
  • Burdo RH, Rice-Evans C. Free radicals and the regulation of mammalian cell proliferation. Free Rad Res Comm. 1989;6(6):345–358.
  • Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol. 1998;10(2):248–253.
  • Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192(1):1–15.
  • Lee JW, Romeo A, Kosman DJ. Transcriptional remodeling and g(1) arrest in dioxygen stress in saccharomyces cerevisiae. J Biol Chem. 1996;271(40):24885–24893.
  • Perrone GG, Tan S-X, Dawes IW. Reactive oxygen species and yeast apoptosis. Biochimica Et Biophysica Acta-Molecular Cell Research. 2008;1783(7):1354–1368.
  • Collinson LP, Dawes IW. Inducibility of the response of yeast-cells yeast cells to peroxide stress. J Gen Microbiol. 1992;138(2):329–335.
  • Flattery-O’Brien JA, Dawes IW. Hydrogen Peroxide Causes RAD9-dependent Cell Cycle arrest in g(2) in Saccharomyces cerevisiae whereas Menadione Causes g(1) Arrest Independent of rad RAD9 Function. J Biol Chem. 1998;273(15):8564–8571.
  • Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ros) in apoptosis induction. Apoptosis. 2000;5(5):415–418.
  • Castello PR, David PS, McClure T, et al. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab. 2006;3(4):277–287.
  • Wedi B, Straede J, Wieland B, et al. Eosinophil apoptosis is mediated by stimulators of cellular oxidative metabolisms and inhibited by antioxidants: involvement of a thiol-sensitive redox regulation in eosinophil cell death. Blood. 1999;94(7):2365–2373.
  • Hamacher-Brady A, Brady NR, Logue SE, et al. Response to myocardial ischemia/reperfusion injury involves bnip3 and autophagy. Cell Death Differ. 2007;14(1):146–157.
  • Moscat J, Diaz-Meco MT. P62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 2009;137(6):1001–1004.
  • Tao Jiang BHT, Harder M, Rojo de la Vega M, et al. P62 links autophagy and nrf2 signaling. Free Radic Biol Med. 2015;88:199–204.
  • Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ros levels by tigar controls autophagy. The EMBO Journal. 2009;28(19):3015–3026.
  • Sun Z-L, Dong J-L, Wu J. Juglanin induces apoptosis and autophagy in human breast cancer progression via ros/jnk promotion. Biomed Pharmacother. 2017;85:303–312.
  • Lin C-J, Lee -C-C, Shih Y-L, et al. Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med. 2012;52(2):377–391.
  • Zhou B, Zhang J-Y, Liu X-S, et al. Tom20 senses iron-activated ros signaling to promote melanoma cell pyroptosis. Cell Res. 2018;28(12):1171–1185.
  • Wang X, Bian Y, Zhang R, et al. Melatonin alleviates cigarette smoke-induced endothelial cell pyroptosis through inhibiting ros/nlrp3 axis. Biochem Biophys Res Commun. 2019;519(2):402–408.
  • Tochhawng L, Deng S, Pervaiz S, et al. Redox regulation of cancer cell migration and invasion. Mitochondrion. 2013;13(3):246–253.
  • Cook MT, Liang Y, Besch-Williford C, et al. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer. 2017;9:9–19.
  • Tomita T, Sadakata H, Tamura M, et al. Indomethacin-induced generation of reactive oxygen species leads to epithelial cell injury before the formation of intestinal lesions in mice. J Physiol Pharmacol. 2014;65(3):435–440.
  • Guo Y-C, Chang C-M, Hsu W-L, et al. Indomethacin inhibits cancer cell migration via attenuation of cellular calcium mobilization. Molecules. 2013;18(6):6584–6596.
  • Donato L, D’Angelo R, Alibrandi S, et al. Effects of a2e-induced oxidative stress on retinal epithelial cells: new insights on differential gene response and retinal dystrophies. Antioxidants. 2020;9(4):307.
  • Donato L, Scimone C, Alibrandi S, et al. Transcriptome analyses of lncrnas in a2e-stressed retinal epithelial cells unveil advanced links between metabolic impairments related to oxidative stress and retinitis pigmentosa. Antioxidants. 2020;9(4):318–338.
  • Donato L, Scimone C, Alibrandi S, et al. Discovery of glo1 new related genes and pathways by rna-seq on a2e-stressed retinal epithelial cells could improve knowledge on retinitis pigmentosa. Antioxidants. 2020;9(5):416.
  • Scimone C, Donato L, Esposito T, et al. A novel rlbp1 gene geographical area-related mutation present in a young patient with retinitis punctata albescens. Hum Genomics. 2017;11(1):18–24.
  • Ieong C, Ma J, Lai W. Ralbp1 regulates oral cancer cells via akt and is a novel target of mir-148a-3p and mir-148b-3p. J Oral Pathol Med. 2019;48(10):919–928.
  • Hong W, Guan K-L. The yap and taz transcription co-activators: key downstream effectors of the mammalian hippo pathway. Semin Cell Dev Biol. 2012;23(7):785–793.
  • Hansen CG, Moroishi T, Guan K-L. Yap and taz: A nexus for hippo signaling and beyond. Trends Cell Biol. 2015;25(9):499–513.
  • Varelas X. The hippo pathway effectors taz and yap in development, homeostasis and disease. Development. 2014;141(8):1614–1626.
  • Xu Z, Chen J, Shao L, et al. Promyelocytic leukemia protein enhances apoptosis of gastric cancer cells through yes-associated protein. Tumor Biol. 2015;36(10):8047–8054.
  • Sun L, Zhang Q, Ren H, et al. Overexpression of yes-associated protein contributes to apoptosis of lung cancer. Int J Clin Exp Pathol. 2016;9(2):540–547.
  • Yuan M, Tomlinson V, Lara R, et al. Yes-associated protein (yap) functions as a tumor suppressor in breast. Cell Death Differ. 2008;15(11):1752–1759.
  • Jia L, Gu W, Zhang Y, et al. Activated yes-associated protein accelerates cell cycle, inhibits apoptosis, and delays senescence in human periodontal ligament stem cells. Int J Med Sci. 2018;15(11):1241–1250.
  • Strano S, Monti O, Pediconi N, et al. The transcriptional coactivator yes-associated protein drives p73 gene-target specificity in response to DNA damage. Mol Cell. 2005;18(4):447–459.
  • Xiao Q, Qian Z, Zhang W, et al. Depletion of cabyr-a/b sensitizes lung cancer cells to trail-induced apoptosis through yap/p73-mediated dr5 upregulation. Oncotarget. 2016;7(8):9514–9525.
  • Matallanas D, Romano D, Yee K, et al. RASSF1A Elicits apoptosis through an MST2 Pathway Directing Proapoptotic Transcription by the p73 Tumor Suppressor Protein. Mol Cell. 2007;27(6):962–975.
  • Lau AN, Curtis SJ, Fillmore CM, et al. Tumor-propagating cells and YAP/taz activity contribute to lung tumor progression and metastasis. The EMBO Journal. 2014;33(13):1502.
  • Rozengurt E, Sinnett-Smith J, Eibl G. Yes-associated protein (yap) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal Transduct Target Ther. 2018;3(1):11.
  • Maugeri-Saccà M, De Maria RJP. The hippo pathway in normal development and cancer. pharmthera. 2018;186:60–72.
  • Wang X, Wu B, Zhong Z. Downregulation of yap inhibits proliferation, invasion and increases cisplatin sensitivity in human hepatocellular carcinoma cells. Oncol Lett. 2018;16(1):585–593.
  • Zhou X, Su J, Feng S, et al. Antitumor activity of curcumin is involved in down-regulation of yap/taz expression in pancreatic cancer cells. Oncotarget. 2016;7(48):79062–79074.
  • Pei T, Huang X, Long Y, et al. Increased expression of yap is associated with decreased cell autophagy in the eutopic endometrial stromal cells of endometriosis. Mol Cell Endocrinol. 2019;491:e328–329.
  • Chen W, Bai Y, Patel C, et al. Autophagy promotes triple negative breast cancer metastasis via yap nuclear localization. Biochem Biophys Res Commun. 2019;520(2):263–268.
  • Wilkinson DS, Jariwala J, Anderson E, et al. Phosphorylation of lc3 by the hippo kinases stk3/stk4 is essential for autophagy. Mol Cell. 2015;57(1):55–68. .
  • Lamar JM, Stern P, Liu H, et al. The hippo pathway target, yap, promotes metastasis through its tead-interaction domain. Proc Natl Acad Sci U S A. 2012;109(37):2441–2450.
  • Bartucci M, Dattilo R, Moriconi C, et al. Taz is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34(6):681–690.
  • Yang S, Zhang L, Purohit V, et al. Active yap promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through lpar3. Oncotarget. 2015;6(34):36019–36031.
  • Nishiyama A, Masutani H, Nakamura H, et al. Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life. 2001;52(121):29–33.
  • Graves JD, Gotoh Y, Draves KE, et al. Caspase-mediated activation and induction of apoptosis by the mammalian ste20-like kinase mst1. The EMBO Journal. 1998;17(8):2224–2234.
  • Chae JS, Gil Hwang S, Lim D-S, et al. Thioredoxin-1 functions as a molecular switch regulating the oxidative stress-induced activation of mst1. Free Radic Biol Med. 2012;53(12):2335–2343.
  • Sanphui P, Biswas SC. Foxo3a is activated and executes neuron death via bim in response to beta-amyloid. Cell Death Dis. 2013;4:e625.
  • Chen L. Non-canonical hippo signaling regulates immune responses. Adv Immunol. 2019;144:87–119.
  • Song HG, Wang M, Xin T. Mst1 contributes to nasal epithelium inflammation via augmenting oxidative stress and mitochondrial dysfunction in a manner dependent on nrf2 inhibition. J Cell Physiol. 2019;234(12):23774–23784.
  • Xiao L, Chen D, Hu P, et al. The c-abl-mst1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci. 2011;31(26):9611–9619.
  • Liu W, Wu J, Xiao L, et al. Regulation of neuronal cell death by c-abl-hippo/mst2 signaling pathway. Plos One. 2012;7(5):e36562.
  • Lee S-J, Seo B-R, Choi E-J, et al. The role of reciprocal activation of cabl and mst1 in the oxidative death of cultured astrocytes. Glia. 2014;62(4):639–648. .
  • Wang Y, Li J, Gao Y, et al. Hippo kinases regulate cell junctions to inhibit tumor metastasis in response to oxidative stress. Redox Biol. 2019;26:e101233.
  • Lehtinen MK, Yuan Z, Boag PR, et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006;125(5):987–1001. .
  • Roh K-H, Choi E-J. TRAF2 functions as an activator switch in the reactive oxygen species-induced stimulation of MST1. Free Radic Biol Med. 2016;91:105–113.
  • Ahmed K, Matsuya Y, Nemoto H, et al. Mechanism of apoptosis induced by a newly synthesized derivative of macrosphelides with a thiazole side chain. Chem Biol Interact. 2009;177(3):218–226.
  • Ma C, Fan L, Wang J, et al. Hippo/MST1 overexpression induces mitochondrial death in head and neck squamous cell carcinoma via activating β-catenin/Drp1 pathway. Cell Stress Chaperones. 2019;24(4):807–816.
  • Rinaldi C, Bramanti P, Scimone C, et al. Relevance of ccm gene polymorphisms for clinical management of sporadic cerebral cavernous malformations. J Neurol Sci. 2017;380(1):31–37.
  • Scimone C, Donato L, Katsarou Z, et al. Two novel KRIT1 and CCM2 mutations in patients affected by cerebral cavernous malformations: new information on ccm2 penetrance. Front Neurol. 2018;9:e00953.
  • Fidalgo M, Guerrero A, Fraile M, et al. Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian ste20-4 to protect cells from oxidative stress. J Biol Chem. 2012;287(14):11556–11565.
  • Chen S, Fang Y, Xu S, et al. Mammalian sterile20-like kinases: signalings and roles in central nervous system. Aging Dis. 2018;9(3):537–552.
  • Goitre L, Villoria-Recio M, Cutano V, et al. KRIT1 and reactive oxygen species: A novel molecular pathway involved in cerebral cavernous malformations. Free Radic Biol Med. 2012;53(1):S58.
  • Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem cell Biol. 2014;47:118–148.
  • Del Re DP, Yang Y, Nakano N, et al. Yes-associated protein isoform 1 (YAP1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem. 2013;288(6):3977–3988.
  • Shao D, Zhai P, Del Re DP, et al. A functional interaction between hippo-yap signalling and foxo1 mediates the oxidative stress response. Nat Commun. 2014;5(1):3315.
  • Liu Y, Lu T, Zhang C, et al. Activation of yap attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury. J Hepatol. 2019;71(4):719–730.
  • Yuan T,  Rafizadeh S, Azizi Z, et al. Proproliferative and antiapoptotic action of exogenously introduced YAP in pancreatic beta β cells. Jci Insight. 2016;1125(185):e86326.
  • Stroebel P, Truemper L, Wulf G, et al. Cd31 expression determines redox status and chemoresistance in human angiosarcomas. Virchows Arch. 2018;473:S23.
  • Ciamporcero E, Daga M, Pizzimenti S, et al. Crosstalk between nrf2 and yap contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer. Free Radic Biol Med. 2018;115:447–457.
  • Hou S, Wang L, Zhang G. Mitofusin-2 regulates inflammation-mediated mouse neuroblastoma n2a cells dysfunction and endoplasmic reticulum stress via the yap-hippo pathway. J Physiol Sci. 2019;69(5):697–709.
  • He L, Ma Y, Li W, et al. Protease-activated receptor 2 signaling modulates susceptibility of colonic epithelium to injury through stabilization of yap in vivo. Cell Death Dis. 2018;9(10):949.
  • Huang H, Zhang W, Pan Y, et al. YAP Suppresses Lung Squamous Cell Carcinoma Progression via Deregulation of the DNp63–GPX2 Axis and ROS Accumulation. Cancer Res. 2017;77(21):5769–5781.
  • Rozycki M, Bialik JF, Speight P, et al. Myocardin-related transcription factor regulates nox4 protein expression: linking cytoskeletal organization to redox state. J Biol Chem. 2016;291(1):227–243. .
  • Chen T, Zhao L, Chen S, et al. The curcumin analogue wz35 affects glycolysis inhibition of gastric cancer cells through ros-yap-jnk pathway. Food Chem Toxicol. 2020;137:e111131.
  • Wang L, Wang C, Tao Z, et al. Curcumin derivative wz35 inhibits tumor cell growth via ros-yap-jnk signaling pathway in breast cancer. J Exp Clin Cancer Res. 2019;38(1):460. .
  • Cucci MA, Compagnone A, Daga M, et al. Post-translational inhibition of yap oncogene expression by 4-hydroxynonenal in bladder cancer cells. Free Radic Biol Med. 2019;141:205–219.
  • Wu H, Xiao Y, Zhang S, et al. The ets transcription factor gabp is a component of the hippo pathway essential for growth and antioxidant defense. Cell Rep. 2013;3(5):1663–1677.
  • Dixit D, Ghildiyal R, Anto NP, et al. Chaetocin-induced ROS-mediated apoptosis involves atm-yap1 ATM–YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis. 2014;5(5):e1212.
  • Mao B, Gao Y, Bai Y, et al. Hippo signaling in stress response and homeostasis maintenance. Acta Biochim Biophys Sin (Shanghai). 2015;47(1):2–9.
  • Wu T, Hu H, Zhang T, et al. Mir-25 promotes cell proliferation, migration, and invasion of non-small-cell lung cancer by targeting the lats2/yap signaling pathway. Oxid Med Cell Longev. 2019;23(12):3945–3954.
  • Rajesh K, Krishnamoorthy J, Gupta J, et al. The eif2α serine 51 phosphorylation-atf4 arm promotes hippo signaling and cell death under oxidative stress. Oncotarget. 2016;7(32):44–58.
  • Ashraf A, Pervaiz S. Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions. Int J Biochem Cell Biol. 2015;69:20–28.
  • Ohsawa S, Sato Y, Enomoto M, et al. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in drosophila. Nature. 2012;490(7421):547.
  • Geng C, Wei J, Wu C. Yap-hippo pathway regulates cerebral hypoxia-reoxygenation injury in neuroblastoma n2a cells via inhibiting rock1/f-actin/mitochondrial fission pathways. Acta Neurol Belg. 2018. DOI:10.1007/s13760-13018-10944-13766.
  • Li H, He F, Zhao X, et al. Yap inhibits the apoptosis and migration of human rectal cancer cells via suppression of jnk-drp1-mitochondrial fission-htra2/omi pathways. Cell Physiol Biochem. 2017;44(5):2073–2089.
  • Morinaka A, Funato Y, Uesugi K, et al. Oligomeric peroxiredoxin-i is an essential intermediate for p53 to activate mst1 kinase and apoptosis. Oncogene. 2011;30(40):4208–4218.
  • Matsuda T, Zhai P, Sciarretta S, et al. NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in the Heart. Circ Res. 2016;119(5):596–606.
  • Choi J, Oh S, Lee D, et al. Mst1-FoxO Signaling Protects naive Naïve T Lymphocytes from Cellular Oxidative Stress in Mice. Plos One. 2009;4(11):e8011.
  • Shang X, Li J, Yu R, et al. Sepsis-related myocardial injury is associated with mst1 upregulation, mitochondrial dysfunction and the drp1/f-actin signaling pathway. J Mol Histol. 2019;50(2):91–103. .
  • Nagaraj R, Gururaja-Rao S, Jones KT, et al. Control of mitochondrial structure and function by the yorkie/yap oncogenic pathway. Genes Dev. 2012;26(18):2027–2037.
  • Yan H, Qiu C, Sun W, et al. Yap regulates gastric cancer survival and migration via sirt1/mfn2/mitophagy. Oncol Rep. 2018;39(4):1671–1681.
  • Lei Q, Tan J, Yi S, et al. Mitochonic acid 5 activates the MAPK–ERK–yap signaling pathways to protect mouse microglial BV-2 cells against tnf alpha-induced TNFα-induced apoptosis via increased Bnip3-related mitophagy. Cell Mol Biol Lett. 2018;23(1):14.
  • Zho J, Zhang S, Li Z, et al. Yap-hippo promotes a549 lung cancer cell death via modulating mief1-related mitochondrial stress and activating jnk pathway. Biomed Pharmacother. 2019;113:e108754.
  • Lu C, Chen X, Wang Q et al. TNFα promotes glioblastoma A172 cell mitochondrial apoptosis via augmenting mitochondrial fission and repression of MAPK–ERK–YAP signaling pathways. Onco Targets Ther. 2018;11:7213–7227.
  • Tian H, Wang K, Jin M, et al. Proinflammation effect of mst1 promotes bv-2 cell death via augmenting drp1-mediated mitochondrial fragmentation and activating the jnk pathway. J Cell Physiol. 2020;235(2):1504–1514.
  • Ji K, Lin K, Wang Y, et al. Taz inhibition promotes il-2-induced apoptosis of hepatocellular carcinoma cells by activating the jnk/f-actin/mitochondrial fission pathway. Cancer Cell Int. 2018;18(1):117–126. .
  • Wei N, Pu Y, Yang Z, et al. Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: role of yap-opa1 signaling pathway and mitochondrial fusion. Biomed Pharmacother. 2019;110:203–212.
  • Tu C, Yang K, Wan L, et al. The crosstalk between lncrnas and the hippo signalling pathway in cancer progression. Cell Prolif. 2020;12(1):e12887.
  • Yuan Z, Lehtinen MK, Merlo P, et al. Regulation of neuronal cell death by mst1-foxo1 signaling. J Biol Chem. 2009;284(17):11285–11292.
  • Meng J, Lv Z, Qiao X, et al. The decay of redox-stress response capacity is a substantive characteristic of aging: revising the redox theory of aging. Redox Biol. 2017;11:365–374.
  • Geng J, Sun X, Wang P, et al. Kinases mst1 and mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16(11):1142–1152. .
  • Wang P, Geng J, Gao J, et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the mst-nrf2 axis. Nat Commun. 2019;10(1):755.
  • Avruch J, Zhou D, Fitamant J, et al. Protein kinases of the hippo pathway: regulation and substrates. Semin Cell Dev Biol. 2012;23(7):770–784.
  • Rawat SJ, Creasy CL, Peterson JR, et al. The tumor suppressor Mmst1 promotes changes in the cellular redox state by phosphorylation and inactivation of peroxiredoxin-1 protein. J Biol Chem. 2013;288(12):8762–8771.
  • Vida C, de Toda IM, Cruces J, et al. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biol. 2017;12:423–437.
  • Geng J, Sun X, Wang P, et al. The kinases mst1 and mst2 positively regulate phagocyte ros induction and bactericidal activity. Nat Immunol. 2015;16(11):1142–1152.
  • Lambeth JD. Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4(3):181–189.
  • Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.
  • West AP, Brodsky IE, Rahner C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472(7344):476–543.
  • Emre Y, Hurtaud C, Nübel T, et al. Mitochondria contribute to lps-induced mapk activation via uncoupling protein UCP2 in macrophages. Biochem J. 2007;402(2):271–278.
  • Pizato N, Luzete BC, Kiffer LFMV, et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;8(1):1952.
  • Wu X, Zhang H, Qi W, et al. Nicotine promotes atherosclerosis via ROS-nlrp3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018;9(2):171.
  • Cui J, Zhou Z, Yang H, et al. Mst1 suppresses pancreatic cancer progression via ros-induced pyroptosis. Mol Cancer Res. 2019;17(6):1316–1325.
  • Gorrini C, Harris IS, Mak TW, et al. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931–947.
  • Liao Y-J, Bai H-Y, Li Z-H, et al. Longikaurin a, a natural ent-kaurane, induces g2/m phase arrest via downregulation of skp2 and apoptosis induction through ros/JNK/c-jun pathway in hepatocellular carcinoma cells. Cell Death Dis. 2014;5(3):e1137.
  • Schieber MS, Chandel N. Ros links glucose metabolism to breast cancer stem cell and emt phenotype. Cancer Cell. 2013;23(3):265–267.
  • Piskounova E, Agathocleous M, Murphy MM, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186.
  • Nikolaou K, Tsagaratou A, Eftychi C, et al. Inactivation of the deubiquitinase cyld in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. Cancer Cell. 2012;21(6):738–750.
  • Zou P, Zhang J, Xia Y, et al. Ros generation mediates the anti-cancer effects of wz35 via activating jnk and er stress apoptotic pathways in gastric cancer. Oncotarget. 2015;6(8):5860–5876.
  • Wang L, Zhu Z, Han L, et al. A curcumin derivative, WZ35, suppresses hepatocellular cancer cell growth via downregulating YAP-mediated autophagy. Food Funct. 2019;10(6):3748–3757.
  • Zhou Y, Wang Y, Zhou W, et al. Yap promotes multi-drug resistance and inhibits autophagy-related cell death in hepatocellular carcinoma via the RAC1--mtor pathway. Cancer Cell Int. 2019;19(1):179.
  • Li WJ,Yue F, Dai Y, et al. Suppressor of hepatocellular carcinoma RASSF1a activates autophagy initiation and maturation. Cell Death Differ. 2019;26(8):1379–1395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.