1,302
Views
2
CrossRef citations to date
0
Altmetric
Review

The phospho-dependent role of BRCA2 on the maintenance of chromosome integrity

ORCID Icon, , & ORCID Icon
Pages 731-741 | Received 13 Nov 2020, Accepted 16 Feb 2021, Published online: 10 Mar 2021

References

  • Nathanson KL, Wooster R, Weber BL, et al. Breast cancer genetics: what we know and what we need. Nat Med. 2001;7(5):552–556.
  • Wooster R, Bignell GR, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–792.
  • Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science. 2002;297(5581):606–609.
  • Yu VP, Koehler M, Steinlein C, et al. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 2000;14(11):1400–1406.
  • Patel KJ, Yu VP, Lee H, et al. Involvement of Brca2 in DNA repair. Mol Cell. 1998;1(3):347–357.
  • Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–374.
  • Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11(3):196–207.
  • Cejka P. DNA end resection: nucleases team up with the right partners to initiate homologous recombination. J Biol Chem. 2015;290(38):22931–22938.
  • Prakash R, Zhang Y, Feng W, et al. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7:a016600–29.
  • Zhang F, Ma J, Wu J, et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol. 2009;19(6):524–529.
  • Xia B, Sheng Q, Nakanishi K, et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell. 2006;22(6):719–729.
  • Oliver A, Oliver AW, Swift S, et al. Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep. 2009;10(9):990–996.
  • Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature. 2002;420(6913):287–293.
  • Yang H, Li Q, Fan J, et al. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature. 2005;433(7026):653–657.
  • Carreira A, Kowalczykowski SC. Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms. Proc Natl Acad Sci USA. 2011;108(26):10448–10453.
  • Carreira A, Hilario J, Amitani I, et al. The BRC Repeats of BRCA2 Modulate the DNA-Binding Selectivity of RAD51. Cell. 2009;136(6):1032–1043.
  • Jensen RB, Carreira A, Kowalczykowski SC. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature. 2010;467(7316):678–683.
  • Thorslund T, McIlwraith MJ, Compton SA, et al. The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol. 2010;17(10):1263–1265.
  • Liu J, Doty T, Gibson B, et al. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol. 2010;17(10):1260–1262.
  • Saeki H, Siaud N, Christ N, et al. Suppression of the DNA repair defects of BRCA2-deficient cells with heterologous protein fusions. Proc Natl Acad Sci USA. 2006;103(23):8768–8773.
  • San Filippo J, Chi P, Sehorn MG, et al. Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J Biol Chem. 2006;281(17):11649–11657.
  • Siaud N, Barbera MA, Egashira A, et al. Plasticity of BRCA2 function in homologous recombination: genetic Interactions of the PALB2 and DNA binding domains. PLoS Genet. 2011;7(12):e1002409.
  • Von Nicolai C, Ehlen Å, Martin C, et al. A second DNA binding site in human BRCA2 promotes homologous recombination. Nat Commun. 2016;7(1):12813.
  • Shahid T, Soroka J, Kong EH, et al. Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor. Nat Struct Mol Biol. 2014;21(11):962–968.
  • Zhou Q, Kojic M, Cao Z, et al. Dss1 interaction with Brh2 as a regulatory mechanism for recombinational repair. Molecular and Cellular Biology. 2007;27(7):2512–2526.
  • Le HP, Ma X, Vaquero J, et al. DSS1 and ssDNA regulate oligomerization of BRCA2. Nucleic Acids Res. 2020;45:4507–4516.
  • Schlacher K, Christ N, Siaud N, et al. Repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145(4):529–542.
  • Hashimoto Y, Ray Chaudhuri A, Lopes M, et al. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol. 2010;17(11):1305–1311.
  • Kolinjivadi AM, Sannino V, De Antoni A, et al. Smarcal1-mediated fork reversal triggers Mre11- dependent degradation of nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Mol Cell. 2017;67(867–881.e7):867–881.e7.
  • Lemaçon D, Jackson J, Quinet A, et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8(1):860. .
  • Mijic S, Zellweger R, Chappidi N, et al. Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun. 2017;8(1):859.
  • Taglialatela A, Alvarez S, Leuzzi G, et al. Restoration of replication fork stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-family fork remodelers. Mol Cell. 2017;68(2):414–430.e8. .
  • Panzarino NJ, Krais JJ, Cong K, et al. Replication gaps underlie BRCA-deficiency and therapy response. Cancer Res. 2020; Internet] [cited 2020 Dec 3]; canres.1602.2020. doi:10.1158/0008-5472.CAN-20-1602.
  • Lee M, Daniels MJ, Venkitaraman AR. Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression. Oncogene. 2004;23(4):865–872.
  • H-r L, Nsy T, Qin J, et al. M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex. J Biol Chem. 2003;278(38):35979–35987.
  • Mondal G, Rowley M, Guidugli L, et al. BRCA2 localization to the midbody by filamin A regulates cep55 signaling and completion of cytokinesis. Dev Cell. 2012;23(1):137–152.
  • Takaoka M, Saito H, Takenaka K, et al. BRCA2 phosphorylated by PLK1 moves to the midbody to regulate cytokinesis mediated by nonmuscle myosin IIC. Cancer Res. 2014;74(5):1518–1528.
  • Daniels MJ. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science. 2004;306(5697):876–879.
  • Lee M, Daniels MJ, Garnett MJ, et al. A mitotic function for the high-mobility group protein HMG20b regulated by its interaction with the BRC repeats of the BRCA2 tumor suppressor. Oncogene. 2011;30(30):3360–3369.
  • Futamura M, Arakawa H, Matsuda K, et al. Potential role of BRCA2 in a mitotic checkpoint after phosphorylation by hBUBR1. Cancer Res. 2000;60(6):1531–1535.
  • Choi E, Park P-G, Lee H, et al. BRCA2 fine-tunes the spindle assembly checkpoint through reinforcement of BubR1 acetylation. Dev Cell. 2012;22(2):295–308.
  • Ehlen A, Martin C, Miron S, et al. Proper chromosome alignment depends on BRCA2 phosphorylation by PLK1. Nat Commun. 2020;11(1):1819.
  • Julien M, Miron S, Carreira A, et al. 1H, 13C and 15N backbone resonance assignment of the human BRCA2 N-terminal region. Biomol NMR Assign. 2020;14(1):79–85.
  • Hanson J, Yang Y, Paliwal K, et al. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks. Bioinformatics. 2017;33(5):685–692.
  • Yang H, Jeffrey PD, Miller J, et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 2002;297(5588):1837–1848.
  • Yata K, Bleuyard J-Y, Nakato R, et al. BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability. Cell Reports. 2014;7:1547–1559.
  • Esashi F, Christ N, Gannon J, et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005;434(7033):598–604.
  • Bahassi EM, Ovesen JL, Riesenberg AL, et al. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008;27(28):3977–3985.
  • Kim S-T, Lim D-S, Canman CE, et al. Identification of putative substrates of ATM kinase family members. J Biol Chem. 1999;274(53):37538–37543.
  • Esashi F, Galkin VE, Yu X, et al. Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct Mol Biol. 2007;14(6):468–474.
  • Davies OR, Pellegrini L. Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol. 2007;14(6):475–483.
  • Pefani D-E, Latusek R, Pires I, et al. RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat Cell Biol. 2014;16(10):962–968.
  • Ayoub N, Rajendra E, Su X, et al. The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry. Curr Biol. 2009;19(13):1075–1085.
  • Yata K, Lloyd J, Maslen S, et al. and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol Cell. 2012;45(3):371–383.
  • Zhang G, Mendez BL, Sedgwick GG, et al. Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation. Nat Commun. 2016;7(1):12256.
  • Elowe S, Hümmer S, Uldschmid A, et al. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 2007;21(17):2205–2219.
  • Suijkerbuijk SJE, Vleugel M, Teixeira A, et al. Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell. 2012;23(4):745–755.
  • Lampson MA, Kapoor TM. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol. 2005;7(1):93–98.
  • Ditchfield C, Johnson VL, Tighe A, et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol. 2003;161(2):267–280.
  • Kruse T, Zhang G, Larsen MSY, et al. Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J Cell Sci. 2013;126(5):1086–1092.
  • Wang X, Bajaj R, Bollen M, et al. Expanding the PP2A Interactome by Defining a B56-Specific SLiM. Structure. 2016;24(12):2174–2181.
  • Wu C-G, Chen H, Guo F, et al. PP2A-B’ holoenzyme substrate recognition, regulation and role in cytokinesis. Cell Discov. 2017;3(1):17027–17029. .
  • Moura M, Conde C. Phosphatases in Mitosis: roles and regulation. Biomolecules. 2019;9(2):55.
  • Hertz EPT, Kruse T, Davey NE, et al. A conserved motif provides binding specificity to the PP2A-B56 phosphatase. Mol Cell. 2016;63(4):686–695.
  • Feng W, Jasin M. BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination. Nat Commun. 2017;8(1):525.
  • Lai X, Broderick R, Bergoglio V, et al. MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells. Nat Commun. 2017;8(1):15983.
  • Ray Chaudhuri A, Callén E, Ding X, et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016;535(7612):382–387.
  • Minocherhomji S, Ying S, Bjerregaard VA, et al. Replication stress activates DNA repair synthesis in mitosis. Nature. 2015;528(7581):286–290.
  • Takaoka M, Saito H, Takenaka K, et al. BRCA2 phosphorylated by PLK1 moves to the midbody to regulate cytokinesis mediated by nonmuscle myosin IIC. Cancer Res. 2016;535(5):382–387.
  • Fonseca CL, Malaby HLH, Sepaniac LA, et al. Mitotic chromosome alignment ensures mitotic fidelity by promoting interchromosomal compaction during anaphase. J Cell Biol. 2019;218(4):1148–1163. .
  • Kuniyasu K, Iemura K, Tanaka K, Delayed chromosome alignment to the spindle equator increases the rate of chromosome missegregation in cancer cell lines. Biomolecules. Internet] 2018; 9(1):10.
  • Zachos G, Black EJ, Walker M, et al. Chk1 is required for spindle checkpoint function. Dev Cell. 2007;12(2):247–260.
  • Kabeche L, Nguyen HD, Buisson R, et al. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science. 2018;359(6371):108–114.
  • Matos DA, Zhang J-M, Ouyang J, et al. ATR Protects the Genome against R Loops through a MUS81-Triggered Feedback Loop. Mol Cell. 2020;77(514–527.e4):514–527.e4.
  • Bass TE, Cortez D. Quantitative phosphoproteomics reveals mitotic function of the ATR activator ETAA1. J Cell Biol. 2020;77(4):514–527.e4.
  • Di Paolo A, Racca C, Calsou P, et al. Loss of BRCA1 impairs centromeric cohesion and triggers chromosomal instability. Faseb J. 2014;28(12):5250–5261.
  • Stolz A, Ertych N, Kienitz A, et al. The CHK2–BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol. 2010;12(5):492–499. .
  • Blackford AN, Stucki M. How cells respond to DNA breaks in mitosis. Trends Biochem Sci. 2020;45(4):321–331.
  • Ait Saada A, Teixeira-Silva A, Iraqui I, et al. Unprotected replication forks are converted into mitotic sister chromatid bridges. Mol Cell. 2017;66(398–410.e4):398–410.e4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.