615
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

A nuclear proteome localization screen reveals the exquisite specificity of Gpn2 in RNA polymerase biogenesis

, , &
Pages 1361-1373 | Received 26 Apr 2021, Accepted 13 Jun 2021, Published online: 28 Jun 2021

References

  • Zhao R, Kakihara Y, Gribun A, et al. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol. 2008 February 11;180(3):563–578.
  • Boulon S, Pradet-Balade B, Verheggen C, et al. HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell. 2010 September 24;39(6):912–924.
  • Forget D, Lacombe AA, Cloutier P, et al. The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol Cell Proteomics. 2010 December 01;9(12):2827–2839.
  • Miron-Garcia MC, Garrido-Godino AI, Garcia-Molinero V, et al. The prefoldin bud27 mediates the assembly of the eukaryotic RNA polymerases in an rpb5-dependent manner. PLoS Genet. 2013;9(2):e1003297.
  • Czeko E, Seizl M, Augsberger C, et al. Iwr1 directs RNA polymerase II nuclear import. Mol Cell. 2011 April 22;42(2):261–266.
  • Esberg A, Moqtaderi Z, Fan X, et al. Iwr1 protein is important for preinitiation complex formation by all three nuclear RNA polymerases in Saccharomyces cerevisiae. PLoS One. 2011;6(6):e20829.
  • Gomez-Navarro N, Peiro-Chova L, Iwr EF. facilitates RNA polymerase II dynamics during transcription elongation. Biochim Biophys Acta Gene Regul Mech. 2017 July 01;1860(7):803–811.
  • Nitta M, Saijo M, Kodo N, et al. A novel cytoplasmic GTPase XAB1 interacts with DNA repair protein XPA. Nucleic Acids Res. 2000 November 01;28(21):4212–4218.
  • Lembo F, Pero R, Angrisano T, et al. MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Mol Cell Biol. 2003 March 01;23(5):1656–1665.
  • Gras S, Chaumont V, Fernandez B, et al. Structural insights into a new homodimeric self-activated GTPase family. EMBO Rep. 2007 June 01;8(6):569–575.
  • Ben-Aroya S, Coombes C, Kwok T, et al. Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell. 2008 April 25;30(2):248–258.
  • Minaker SW, Filiatrault MC, Ben-Aroya S, et al. Biogenesis of RNA polymerases II and III requires the conserved GPN small GTPases in Saccharomyces cerevisiae. Genetics. 2013 March 01;193(3):853–864.
  • Alonso B, Chaussinand G, Armengaud J, et al. A role for GPN-loop GTPase yGPN1 in sister chromatid cohesion. Cell Cycle. 2011 June 01;10(11):1828–1837.
  • Alonso B, Beraud C, Meguellati S, et al. Eukaryotic GPN-loop GTPases paralogs use a dimeric assembly reminiscent of archeal GPN. Cell Cycle. 2013 February 01;12(3):463–472.
  • Staresincic L, Walker J, Dirac-Svejstrup AB, et al. GTP-dependent binding and nuclear transport of RNA polymerase II by Npa3 protein. J Biol Chem. 2011 October 14;286(41):35553–35561.
  • Krogan NJ, Cagney G, Yu H, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006 March 30;440(7084):637–643.
  • Huh WK, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast. Nature. 2003 October 16;425(6959):686–691.
  • Li Z, Vizeacoumar FJ, Bahr S, et al. Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol. 2011 April 01;29(4):361–367.
  • Ho CH, Magtanong L, Barker SL, et al. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol. 2009 April 01;27(4):369–377.
  • Gietz RD, Woods RA. Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol. 2006;313:107–120.
  • David CJ, Boyne AR, Millhouse SR, et al. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev. 2011 May 01;25(9):972–983.
  • David CJ, Manley JL. The RNA polymerase C-terminal domain: a new role in spliceosome assembly. Transcription. 2011 October 01;2(5):221–225.
  • Dastidar RG, Hooda J, Shah A, et al. The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell Biosci. 2012 August 29;2(1):30.
  • Strambio-de-castillia C, Blobel G, Rout MP. Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol. 1999 March 08;144(5):839–855.
  • Niepel M, Strambio-de-castillia C, Fasolo J, et al. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J Cell Biol. 2005 July 18;170(2):225–235.
  • Hediger F, Dubrana K, Gasser SM. Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. J Struct Biol. 2002 December 01;140(1–3):79–91.
  • Garcia-Benitez F, Gaillard H, Aguilera A. Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability. Proc Natl Acad Sci U S A. 2017 October 10;114(41):10942–10947.
  • Hani J, Schelbert B, Bernhardt A, et al. Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3ʹ-end formation of a pre-mRNA in Saccharomyces cerevisiae. J Biol Chem. 1999 January 01;274(1):108–116.
  • Namitz KEW, Zheng T, Canning AJ, et al. Structure analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism. Commun Biol. 2021 March 25;4(1):398.
  • Gibney PA, Fries T, Bailer SM, et al. Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins. Eukaryot Cell. 2008 June 01;7(6):938–948.
  • Mosley AL, Pattenden SG, Carey M, et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell. 2009 April 24;34(2):168–178.
  • Irie K, Nomoto S, Miyajima I, et al. SGV1 encodes a CDC28/cdc2-related kinase required for a G alpha subunit-mediated adaptive response to pheromone in S. Cerevisiae Cell. 1991 May 31;65(5):785–795.
  • Dundr M, McNally JG, Cohen J, et al. Quantitation of GFP-fusion proteins in single living cells. J Struct Biol. 2002 December 01;140(1–3):92–99.
  • Zeng F, Hua Y, Liu X, et al. Gpn2 and Rba50 Directly Participate in the Assembly of the Rpb3 Subcomplex in the Biogenesis of RNA Polymerase II. 10.1128/MCB.00091,18.Print 2018 Jul 1.. Mol Cell Biol. 2018 June 14;38(13).
  • Guilfoyle TJ, Lin CY, Chen YM, et al. Enhancement of soybean RNA polymerase I by auxin. Proc Natl Acad Sci U S A. 1975 January 01;72(1):69–72.
  • Abraham KJ, Khosraviani N, Chan JNY, et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. 2020 September 01;585(7824):298–302.
  • Torreira E, Louro JA, Pazos I, et al. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription. Elife. 2017 March 06;6. doi:10.7554/eLife.20832
  • Barbosa-Camacho AA, Mendez-Hernandez LE, Lara-Chacon B, et al. The Gpn3 Q279* cancer-associated mutant inhibits Gpn1 nuclear export and is deficient in RNA polymerase II nuclear targeting. FEBS Lett. 2017 November 01;591(21):3555–3566.
  • Lara-Chacon B, Guerrero-Rodriguez SL, Ramirez-Hernandez KJ, et al. Gpn3 is essential for cell proliferation of breast cancer cells independent of their malignancy degree. Technol Cancer Res Treat. 2019 January 01;18:1533033819870823. .
  • Huang F, Huffman KE, Wang Z, et al. Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small-cell lung cancer. J Clin Invest. 2021 January 04;131(1). DOI:10.1172/JCI139929
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May 01;2(5):401–404.
  • Walker-Kopp N, Jackobel AJ, Pannafino GN, et al. Treacher Collins syndrome mutations in Saccharomyces cerevisiae destabilize RNA polymerase I and III complex integrity. Hum Mol Genet. 2017 November 01;26(21):4290–4300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.