1,403
Views
1
CrossRef citations to date
0
Altmetric
Review

A promising field: regulating imbalance of EndMT in cardiovascular diseases

, , , , , , , & show all
Pages 1477-1486 | Received 18 Nov 2020, Accepted 30 Jun 2021, Published online: 16 Jul 2021

References

  • Evrard SM, Lecce L, Michelis KC, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7(1):11853.
  • Xiao L, Dudley AC. Fine-tuning vascular fate during endothelial-mesenchymal transition. J Pathol. 2017;241(1):25–35.
  • Von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012;110(12):1628–1645.
  • Xiong J, Kawagishi H, Yan Y, et al. A metabolic basis for endothelial-to-mesenchymal transition. Mol Cell. 2018;69(4):e7.
  • Isabella S, Mona P, Jacqueline H, et al. Endothelial mesenchymal transition in hypoxic microvascular endothelial cells and paracrine induction of cardiomyocyte apoptosis are mediated via TGFβ1/SMAD Signaling. International Journal of Molecular Ences. 2017;18:307–316.
  • Chen XY, Lv RJ, Zhang W, et al. Inhibition of myocyte-specific enhancer factor 2A improved diabetic cardiac fibrosis partially by regulating endothelial-to-mesenchymal transition. Oncotarget. 2016;7(21):31053–31066.
  • Bochenek ML, Leidinger C, Rosinus NS, et al. Activated Endothelial TGFβ1 signaling promotes venous thrombus nonresolution in mice via Endothelin-1: potential Role for Chronic Thromboembolic Pulmonary Hypertension. Circ Res. 2020;126(2):162–181.
  • Ya-Meng H, Hou-Qin Y, Zhong R, et al. Endothelial to mesenchymal transition in atherosclerotic vascular remodeling. Clinica Chimica Acta International Journal of Clinical Chemistry. 2018;490:34-38.
  • Kouzbari K, Hossan MR, Arrizabalaga JH, et al. Oscillatory shear potentiates latent TGF-beta1 activation more than steady shear as demonstrated by a novel force generator. Sci Rep. 2019;9(1):6065.
  • Mahmoud MM, Serbanovic-Canic J, Feng S, et al. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci Rep. 2017;7(1):3375.
  • Ajami NE, Gupta S, Maurya MR, et al. Systems biology analysis of longitudinal functional response of endothelial cells to shear stress. Proc Natl Acad Sci U S A. 2017;114(41):10990.
  • Moonen JR, Lee ES, Schmidt M, et al. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc Res. 2015;108(3):377–386.
  • Lai B, Li Z, He M, et al. Atheroprone flow enhances the endothelial-to-mesenchymal transition. Am J Physiol Heart Circ Physiol. 2018;315(5):H1293–h303.
  • Burtenshaw D, Kitching M, Redmond EM, et al. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical Atherosclerotic Disease. 2019;6:89.
  • Jiyuan C, Andrew P, L C P, et al. Loss of Smooth Muscle α-Actin Leads to NF-κB-Dependent Increased Sensitivity to Angiotensin II in Smooth Muscle Cells and Aortic Enlargement. Circ Res. 2017;120(12):1903-1915.
  • Yao Y, Jumabay M, Ly A, et al. A role for the endothelium in vascular calcification. Circ Res. 2013;113(5):495–504.
  • Yao J, Guihard PJ, Blazquez-Medela AM, et al. Serine protease activation essential for endothelial-mesenchymal transition in vascular calcification. Circ Res. 2015;117(9):758–769.
  • Medici D, Shore EM, Lounev VY, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16(12):1400–1406.
  • Shohreh M, Sanela K, Valentina P, et al. Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves. Sci Rep. 2016;6:35712.
  • Maleki S, Poujade FA, Bergman O, et al. Endothelial/ epithelial mesenchymal transition in ascending aortas of patients with bicuspid aortic valve. Front Cardiovasc Med. 2019;6:182.
  • Nicolini G, Forini F, Kusmic C, et al. Angiopoietin 2 signal complexity in cardiovascular disease and cancer. Life ences. 2019;239:117080.
  • Vingolo EM, Fragiotta S, Mafrici M, et al. Vitreous and plasma changes of endothelin-1, adrenomedullin and vascular endothelium growth factor in patients with proliferative diabetic retinopathy. European Review for Medical & Pharmacological Sciences. 2017;21:662.
  • Feng L, Zhang C, Liu G, et al. RKIP negatively regulates the glucose induced angiogenesis and endothelial-mesenchymal transition in retinal endothelial cells. Exp Eye Res. 2019;189:107851.
  • Goumans M-J, ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol. 2017;10(2):a022210.
  • Yongliang J, Xuanfen Z, Ruicheng H, et al. β1-induced SMAD2/3/4 activation promotes RELM-β transcription to modulate the endothelium-mesenchymal transition in human endothelial cells. Int J Biochem Biotechnol. 2018;105:52-60.
  • Volkmann I, Kumarswamy R, Pfaff N, et al. MicroRNA-mediated epigenetic silencing of sirtuin1 contributes to impaired angiogenic responses. Circ Res. 2013;113(8):997–1003.
  • Li Z, Wang F, Zha S, et al. SIRT1 inhibits TGF‐β‐induced endothelial‐mesenchymal transition in human endothelial cells with Smad4 deacetylation. J Cell Physiol. 2018;233(11):9007-9014.
  • Liu ZH, Zhang Y, Wang X, et al. SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed Pharmacother. 2019;118:109227.
  • Lin C-H, Lin -C-C, Ting W-J, et al. Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. Age (Omaha). 2014;36(5):9705.
  • Pawel Z, Katrin P-Z, Jingang H, et al. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2016.75(1):226-33.
  • Wang Z, Han Z, Tao J, et al. Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med. 2017;21(10):2359–2369.
  • Wang Z, Fei S, Suo C, et al. Antifibrotic Effects of Hepatocyte Growth Factor on Endothelial-to-Mesenchymal Transition via Transforming Growth Factor-Beta1 (TGF-β1)/Smad and Akt/mTOR/P70S6K Signaling Pathways. Ann Transplant. 2018;23:1–10.
  • Przemyslaw B, Bjrn M-E, Tomas V, et al. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 2017;38(18):1413–1425.
  • Choi SH, Kim H, Lee HG, et al. Dickkopf-1 induces angiogenesis via VEGF receptor 2 regulation independent of the Wnt signaling pathway. Oncotarget. 2017;8(35):58974-58984.
  • Cheng S-L, Shao J-S, Behrmann A, et al. Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arteriosclerosis Thrombosis & Vascular Biology. 2013;33(7):1679–1689.
  • Mark L, Hassan D, Li JN, et al. Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol Dialysis Transplantation. 2018;34(1):49–62.
  • Zhou X, Chen X, Cai JJ, et al. Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Design Development & Therapy. 2015;9:4599-4611.
  • Lin QQ, Zhao J, Zheng CG, et al. Roles of notch signaling pathway and endothelial-mesenchymal transition in vascular endothelial dysfunction and atherosclerosis. Eur Rev Med Pharmacol Sci. 2018;22:6485–6491.
  • Zhang J, Zeng Y, Chen J, et al. miR-29a/b cluster suppresses high glucose-induced endothelial-mesenchymal transition in human retinal microvascular endothelial cells by targeting Notch2. Exp Ther Med. 2019;17:3108–3116.
  • Liu W, Wu Y, Yu F, et al. The implication of Numb-induced Notch signaling in endothelial-mesenchymal transition of diabetic nephropathy. J Diabetes Complications. 2018;32(10):889–899.
  • Zhou H, Chen X, Chen L, et al. Anti-fibrosis effect of scutellarin via inhibition of endothelial–mesenchymal transition on isoprenaline-induced myocardial fibrosis in rats. Molecules. 2014;19(10):15611–15623.
  • Chen PY, Qin L, Barnes C, et al. FGF Regulates TGF-β Signaling and Endothelial-to-Mesenchymal Transition via Control of let-7 miRNA Expression. Cell Rep. 2012;2(6):1684-1696.
  • Ben M-W, Illigens A, Casar B, et al. Vascular Endothelial Growth Factor Prevents Endothelial-to-Mesenchymal Transition in?Hypertrophy. Ann Thorac Surg. 2017;104(3):932-939.
  • Shi S, Srivastava SP, Kanasaki M, et al. Interactions of DPP-4 and integrin β1 influences endothelial-to-mesenchymal transition. Kidney Int. 2015;88(3):479–489.
  • Chakraborty S, Mir KB, Seligson ND, et al. Integration of EMT and cellular survival instincts in reprogramming of programmed cell death to anastasis. Cancer Metastasis Rev. 2020;39(2):553–566.
  • Zongyi L, Haoyun D, Wenjing Y, et al. Nicotinamide inhibits corneal endothelial mesenchymal transition and accelerates wound healing. Experimental eye research. 2019;184:227-233
  • Zhao C, Li W, Duan H, et al. NAD+ precursors protect corneal endothelial cells from UVB-induced apoptosis. Am J Physiol Cell Physiol. 2020;318(4):C796–c805.
  • Gong L, Lei Y, Liu Y, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling. Am J Transl Res. 2019;11:2140–2154.
  • Zhao H, Liu M, Liu H, et al. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP Pathway. Biosci Rep. 2020;40(3):BSR20193431.
  • Zhang CC, Yan Z, Zong Q, et al. Synergistic Effect of the γ-Secretase Inhibitor PF-03084014 and Docetaxel in Breast Cancer Models. Stem Cells Transl Med. 2013;2(3):233–242.
  • Souilhol C, Harmsen MC, Evans PC, et al. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114(4):565–577.
  • Mallat Z, Tedgui A. Apoptosis in the vasculature: mechanisms and functional importance. Br J Pharmacol. 2000;130(5):947-962.
  • Song J. EMT or apoptosis: a decision for TGF-beta. Cell Res. 2007;17(4):289–290.
  • Li J, Xiong J, Yang B, et al. Endothelial Cell Apoptosis Induces TGF-β Signaling-Dependent Host Endothelial-Mesenchymal Transition to Promote Transplant Arteriosclerosis. Am J Transplant. 2015;15(12):3095–3111.
  • Nakaya M, Watari K, Tajima M, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Investig. 2017;127(1):383.
  • Jeong D, Lee M, Li A, et al. Matricellular Protein CCN5 Reverses Established Cardiac Fibrosis. JOURNAL- AMERICAN COLLEGE OF CARDIOLOGY. 2016;67(13):1556-1568
  • Jin B, Shi H, Zhu J, et al. Up-regulating autophagy by targeting the mTOR-4EBP1 pathway: a possible mechanism for improving cardiac function in mice with experimental dilated cardiomyopathy. BMC Cardiovasc Disord. 2020;20(1):56.
  • Sakao S, Hao H, Tanabe N, et al. Endothelial-like cells in chronic thromboembolic pulmonary hypertension: crosstalk with myofibroblast-like cells. Respir Res. 2011;12(1):109.
  • Zou J, Liu Y, Li B, et al. Autophagy attenuates endothelial-to-mesenchymal transition by promoting Snail degradation in human cardiac microvascular endothelial cells. Biosci Rep. 2017;37(5):BSR20171049.
  • Pinto MT, Ferreira Melo FU, Malta TM, et al. Endothelial cells from different anatomical origin have distinct responses during SNAIL/TGF-β2-mediated endothelial-mesenchymal transition. Am J Transl Res. 2018;10:4065–4081.
  • Song S, Liu L, Yu Y, et al. Inhibition of BRD4 attenuates transverse aortic constriction- and TGF-β-induced endothelial-mesenchymal transition and cardiac fibrosis. J Mol Cell Cardiol. 2019;127:83–96.
  • Liu T, Zou XZ, Huang N, et al. Down-regulation of miR-204 attenuates endothelial-mesenchymal transition by enhancing autophagy in hypoxia-induced pulmonary hypertension. Eur J Pharmacol. 2019;863:172673.
  • Marchi S, Trapani E, Corricelli M, et al. Beyond multiple mechanisms and a unique drug: defective autophagy as pivotal player in cerebral cavernous malformation pathogenesis and implications for targeted therapies. Rare Dis (Austin, Tex). 2016;4(1):e1142640.
  • Marchi S, Corricelli M, Trapani E, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015;7(11):1403–1417.
  • Singh KK, Lovren F, Pan Y, et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transitionBSR20171049. J Biol Chem. 2015;290(5):2547-2559.
  • Hammoutene A, Biquard L, Lasselin J, et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol. 2020;72:528–538.
  • Takagaki Y, Lee SM, Dongqing Z, et al. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy. 2020;16(10):1905-1914.
  • Chaofan L, Xing Z, Jinghao L, et al. Autophagy mediates 2-methoxyestradiol-inhibited scleroderma collagen synthesis and endothelial-to-mesenchymal transition induced by hypoxia. Rheumatology (Oxford). 2019;58(11):1966-1975.
  • Chao J, Wang X, Zhang Y, et al. Role of MCPIP1 in the Endothelial-mesenchymal transition induced by silica. Cellular Physiology &Biochemistry. 2016;40(1–2):309–325.
  • Patschan D, Schwarze K, Henze E, et al. Endothelial autophagy and Endothelial-to-Mesenchymal Transition (EndoMT) in eEPC treatment of ischemic AKI. J Nephrol. 2016;29(5):637–644.
  • Garg M. Epithelial plasticity, autophagy and metastasis: potential modifiers of the crosstalk to overcome therapeutic resistance. Stem Cell Rev Rep. 2020;16(3):503–510.
  • Rojas-Sanchez G, Cotzomi-Ortega I, Pazos-Salazar NG, et al. Autophagy and Its Relationship to Epithelial to Mesenchymal Transition: when Autophagy Inhibition for Cancer Therapy Turns Counterproductive. Biology (Basel). 2019;8(4):1–20.
  • Dejana E, Hirschi KK, Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8(1):14361.
  • Welch-Reardon KM, Wu N, Hughes CCW. A Role for Partial Endothelial-Mesenchymal Transitions in Angiogenesis? Arteriosclerosis Thrombosis & Vascular Biology. 2014;35(2):303-308.
  • Ubil E, Duan J, Pillai IC, et al. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature. 2014;514(7524):585–590.
  • He L, Huang X, Kanisicak O, et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Investig. 2017;127(8):2968.
  • Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599–604.
  • Furihata T, Kawamatsu S, Ito R, et al. Hydrocortisone enhances the barrier properties of HBMEC/cibeta, a brain microvascular endothelial cell line, through mesenchymal-to-endothelial transition-like effects. Fluids Barriers CNS. 2015;12(1):7.
  • Kulas P, Willnecker V, Dlugaiczyk J, et al. Mesenchymal-endothelial transition in juvenile angiofibroma? Acta Otolaryngol. 2015;135(9):955–961.
  • Lin F, Zeng Z, Song Y, et al. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res Ther. 2019;10(1):263.
  • Batlle R, Andrés E, Gonzalez L, et al. Regulation of tumor angiogenesis and mesenchymal-endothelial transition by p38α through TGF-β and JNK signaling. Nat Commun. 2019;10(1):3071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.