819
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

CGGBP1-dependent CTCF-binding sites restrict ectopic transcription

, , &
Pages 2387-2401 | Received 23 Apr 2021, Accepted 14 Sep 2021, Published online: 29 Sep 2021

References

  • Phillips JE, Corces VG. CTCF: master weaver of the genome [Internet]. Cell. 2009;137:1194–1211.
  • Ong C-T, Corces VG. CTCF: an architectural protein bridging genome topology and function [Internet]. Nat Rev Genet. 2014;15:234–246.
  • Van Bortle K, Ramos E, Takenaka N, et al. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains [Internet]. Genome Res. 2012;22:2176–2187.
  • Nichols MH, Corces VG. A CTCF code for 3D genome architecture. Cell. 2015;162:703–705.
  • Arzate-Mejía RG, Recillas-Targa F, Corces VG. Developing in 3D: the role of CTCF in cell differentiation. Development [Internet]. 2018;145. DOI:10.1242/dev.137729.
  • Ren G, Zhao K. CTCF and cellular heterogeneity [Internet]. Cell Biosci. 2019;9. DOI:10.1186/s13578-019-0347-2.
  • Hou C, Dale R, Dean A. Cell type specificity of chromatin organization mediated by CTCF and cohesin [Internet]. Proc Nat Acad Sci. 2010;107:3651–3656.
  • Han L, Lee D-H, Szabó PE. CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region [Internet]. Mol Cell Biol. 2008;28:1124–1135.
  • Ulaner GA, Yang Y, Hu J-F, et al. CTCF binding at the insulin-like growth factor-II (IGF2)/H19 imprinting control region is insufficient to regulate IGF2/H19 expression in human tissues [Internet]. Endocrinology. 2003;144:4420–4426.
  • Valadez-Graham V. CTCF-dependent enhancer blockers at the upstream region of the chicken -globin gene domain [Internet]. Nucleic Acids Res Available from. 2004;32:1354–1362.
  • Farrell CM, West AG, Felsenfeld G. Conserved CTCF insulator elements flank the mouse and human β-globin loci [Internet]. Mol Cell Biol. 2002;22:3820–3831.
  • Kurukuti S, Tiwari VK, Tavoosidana G, et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A. 2006;103:10684–10689.
  • Narendra V, Bulajić M, Dekker J, et al. CTCF-mediated topological boundaries during development foster appropriate gene regulation. Genes Dev. 2016;30:2657–2662.
  • Giorgetti L, Lajoie BR, Carter AC, et al. Structural organization of the inactive X chromosome in the mouse. Nature. 2016;535:575–579.
  • Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication. Cell. 2016;164:1110–1121.
  • Galupa R, Crocker J. Enhancer–promoter communication: thinking outside the TAD [Internet]. Trends Genet. 2020;36:459–461.
  • Ghirlando R, Felsenfeld G. CTCF: making the right connections. Genes Dev. 2016;30:881–891.
  • Lu Y, Shan G, Xue J, et al. Defining the multivalent functions of CTCF from chromatin state and three-dimensional chromatin interactions. Nucleic Acids Res. 2016;44:6200–6212.
  • Kim YJ, Cecchini KR, Kim TH. Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus. Proc Natl Acad Sci U S A. 2011;108:7391–7396.
  • Barkess G, West AG. Chromatin insulator elements: establishing barriers to set heterochromatin boundaries. Epigenomics. 2012;4:67–80.
  • Cuddapah S, Jothi R, Schones DE, et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 2009;19:24–32.
  • Patel M, Patel D, Datta S, et al. CGGBP1-regulated cytosine methylation at CTCF-binding motifs resists stochasticity. BMC Genet. 2020;21:84.
  • Patel D, Patel M, Datta S, et al. CGGBP1 regulates CTCF occupancy at repeats [Internet]. Epigenetics Chromatin. 2019;12. DOI:10.1186/s13072-019-0305-6.
  • Becker JS, Nicetto D, Zaret KS. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet. 2016;32:29.
  • Ninova M, Fejes Tóth K, Aravin AA. The control of gene expression and cell identity by H3K9 trimethylation. Development [Internet]. 2019; 146 . http://dx.doi.org/10.1242/dev.181180
  • Van Kruijsbergen I, Hontelez S, Elurbe DM, et al. Heterochromatic histone modifications at transposons in xenopus tropicalis embryos. Dev Biol. 2017;426:460.
  • Bulut-Karslioglu A, De La Rosa-Velázquez IA, Ramirez F, et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell. 2014;55:277–290.
  • Iglesias N, Moazed D. Heterochromatin: silencing repetitive DNA. 2017 [cited 2020 Nov 8]; Available from: https://elifesciences.org/articles/29503
  • Schmidt D, Schwalie PC, Wilson MD, et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell. 2012;148:335–348.
  • Patel D, Patel M, Westermark B, et al. Dynamic bimodal changes in CpG and non-CpG methylation genome-wide upon CGGBP1 loss-of-function [Internet]. BMC Res Notes. 2018;11. DOI:10.1186/s13104-018-3516-1.
  • Weintraub AS, Li CH, Zamudio AV, et al. YY1 is a structural regulator of enhancer-promoter loops. Cell. 2017;171:1573.
  • Hahn M, Dambacher S, Dulev S, et al. Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev. 2013;27:859–872.
  • Singh U, Roswall P, Uhrbom L, et al. CGGBP1 regulates cell cycle in cancer cells. BMC Mol Biol. 2011;12:28.
  • Singh U, Westermark B. CGGBP1—an indispensable protein with ubiquitous cytoprotective functions [Internet]. Ups J Med Sci. 2015;120:219–232.
  • Yusufzai TM, Tagami H, Nakatani Y, et al. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species [Internet]. Mol Cell. 2004;13(291–8). DOI:10.1016/s1097-2765(04)00029-2
  • Hein MY, Hubner NC, Poser I, et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163:712–723.
  • Agarwal P, Enroth S, Teichmann M, et al. Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs. Cell Cycle. 2016;15:1558–1571.
  • Ichiyanagi K. Regulating Pol III transcription to change Pol II transcriptome. Cell Cycle. 2014;13:3625–3626.
  • Cardiello JF, Kugel JF, Goodrich JA. A new twist on cell growth control. Cell Cycle. 2014;13:3474–3475.
  • Lobanenkov VV, Nicolas RH, Adler VV, et al. A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5ʹ-flanking sequence of the chicken c-myc gene. Oncogene. 1990;5:1743–1753.
  • Holwerda SJB, de Laat W. CTCF: the protein, the binding partners, the binding sites and their chromatin loops. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120369.
  • Klenova EM, Nicolas RH, Paterson HF, et al. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol Cell Biol. 1993;13:7612–7624.
  • Nishana M, Ha C, Rodriguez-Hernaez J, et al. Defining the relative and combined contribution of CTCF and CTCFL to genomic regulation. Genome Biol. 2020;21:1–34.
  • Kadesch T, Berg P. Effects of the position of the simian virus 40 enhancer on expression of multiple transcription units in a single plasmid. Mol Cell Biol. 1986;6:2593–2601.
  • Benoist C, Chambon P. In vivo sequence requirements of the SV40 early promotor region. Nature. 1981;290:304–310.
  • Shaw PE, Bohmann D, Sergeant A. The SV40 enhancer influences viral late transcription in vitro and in vivo but not on replicating templates [Internet]. EMBO J. 1985;4:3247–3252.
  • Sassone-Corsi P, Dougherty JP, Wasylyk B, et al. Stimulation of in vitro transcription from heterologous promoters by the SV40 enhancer [Internet]. Transfer ‖ Expression of Eukaryotic Genes. 1984;:7–21. 10.1016/b978-0-12-284650-2.50008-0
  • Kelly JJ, Wildeman AG. Role of the SV40 enhancer in the early to late shift in viral transcription [Internet]. Nucleic Acids Res. 1991;19:6799–6804.
  • Byrne BJ, Davis MS, Yamaguchi J, et al. Definition of the simian virus 40 early promoter region and demonstration of a host range bias in the enhancement effect of the simian virus 40 72-base-pair repeat. Proc Natl Acad Sci U S A. 1983;80:721–725.
  • Hertz GZ, Mertz JE. The enhancer elements and GGGCGG boxes of SV40 provide similar functions in bidirectionally promoting transcription. Virology. 1988;163:579–590.
  • Wasylyk B, Wasylyk C, Augereau P, et al. The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell. 1983;32:503–514.
  • Gidoni D, Kadonaga JT, Barrera-Saldaña H, et al. Bidirectional SV40 transcription mediated by tandem Sp1 binding interactions. Science. 1985;230:511–517.
  • Gruss C, Wetzel E, Baack M, et al. High-affinity SV40 T-antigen binding sites in the human genome. Virology. 1988;167:349–360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.