493
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

miR-29a-3p mitigates the development of osteosarcoma through modulating IGF1 mediated PI3k/Akt/FOXO3 pathway by activating autophagy

, , , &
Pages 1980-1995 | Received 05 Jan 2021, Accepted 11 May 2022, Published online: 31 May 2022

References

  • Luetke A, Meyers PA, Lewis I, et al. Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–532.
  • Meyers PA, Heller G, Healey JH, et al. Osteogenic sarcoma with clinically detectable metastasis at initial presentation. J Clin Oncol. 1993;11(3):449–453.
  • Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1–2):11–42.
  • Onorati AV, Dyczynski M, Ojha R, et al. Targeting autophagy in cancer. Cancer. 2018;124(16):3307–3318.
  • Camuzard O, Santucci-Darmanin S, Carle GF, et al. Role of autophagy in osteosarcoma. J Bone Oncol. 2019;16:100235.
  • Dong SW, Xiao YB, Ma X, et al. miR-193b increases the chemosensitivity of osteosarcoma cells by promoting FEN1-mediated autophagy. Onco Targets Ther. 2019;12:10089–10098.
  • Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer. Cancer Res. 2016;76(13):3666–3670.
  • Liu F, Wang XD. miR-150-5p represses TP53 tumor suppressor gene to promote proliferation of colon adenocarcinoma. Sci Rep. 2019;9(1):6740.
  • Dai FQ, Li CR, Fan XQ, et al. miR-150-5p inhibits non-small-cell lung cancer metastasis and recurrence by targeting HMGA2 and β-catenin signaling. Mol Ther Nucleic Acids. 2019;16:675–685.
  • Liu Q, Wang Z, Zhou X, et al. miR-342-5p inhibits osteosarcoma cell growth, migration, invasion, and sensitivity to Doxorubicin through targeting Wnt7b. Cell Cycle. 2019 Dec;18(23):3325–3336. Epub 2019 Oct 10.
  • Liu K, Huang J, Ni J, et al. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle. 2017 Mar 19;16(6):578–587. Epub 2017 Feb 10.
  • Wang L, Liu Y. Long noncoding RNA RHPN1-AS1 exerts pro-oncogenic actions in osteosarcoma by functioning as a molecular sponge of miR-506 to positively regulate SNAI2 expression. Cell Cycle. 2020 Jun;19(12):1517–1529. Epub 2020 May 13.
  • Wang F, Zhao QH, Liu JZ, et al. MiRNA-188-5p alleviates the progression of osteosarcoma via target degrading CCNT2. Eur Rev Med Pharmacol Sci. 2020 Jan;24(1):29–35.
  • Zheng ZL, Cui HT, Wang Y, et al. Downregulation of RPS15A by miR-29a-3p attenuates cell proliferation in colorectal carcinoma. Biosci Biotechnol Biochem. 2019;83(11):2057–2064.
  • Wang X, Liu SS, Cao L, et al. miR-29a-3p suppresses cell proliferation and migration by downregulating IGF1R in hepatocellular carcinoma. Oncotarget. 2017;8(49):86592–86603.
  • Chao S, Wang WC, Wang CC. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway. Oncol Lett. 2018;15(5):7000–7006.
  • Li YS, Liu Q, He HB, et al. The possible role of insulin-like growth factor-1 in osteosarcoma. Curr Probl Cancer. 2019;43(3):228–235.
  • Wang J, Zhang Y, Dou ZX, et al. Knockdown of STIL suppresses the progression of gastric cancer by down-regulating the IGF‐1/PI3k/AKT pathway. J Cell Mol Med. 2019;23(8):5566–5575.
  • Chen Y, Huang WD, Sun W, et al. LncRNA MALAT1 promotes cancer metastasis in osteosarcoma via activation of the PI3k-Akt signaling pathway. Cell Physiol Biochem. 2018;51(3):1313–1326.
  • Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96(6):857–868.
  • Rupp M, Hagenbuchner J, Rass B, et al. FOXO3-mediated chemo-protection in high-stage neuroblastoma depends on wild-type TP53 and SESN3. Oncogene. 2017;36(44):6190–6203.
  • Zhou YF, Li SX, Li JT, et al. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3k/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem. 2017;42(4):1431–1446.
  • Wang Y, Zhang R, Cheng G, et al. Long noncoding RNA HOXA-AS2 promotes migration and invasion by acting as a ceRNA of miR-520c-3p in osteosarcoma cells. Cell Cycle. 2018;17(13):1637–1648.
  • Corre I, Verrecchia F, Crenn V, et al. The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells. 2020;9(4):976.
  • Ferguson JL, Turner SP. Bone cancer: diagnosis and treatment principles. Am Fam Physician. 2018;98(4):205–213.
  • Wang CY, Ren M, Zhao X, et al. Emerging roles of circular RNAs in osteosarcoma. Med Sci Monit. 2018;24:7043–7050.
  • Li ZH, Dou PC, Liu T, et al. Application of long noncoding RNAs in osteosarcoma: biomarkers and therapeutic targets. Cell Physiol Biochem. 2017;42(4):1407–1419.
  • Wang JC, Liu SZ, Shi JY, et al. The role of miRNA in the diagnosis, prognosis, and treatment of osteosarcoma. Cancer Biother Radiopharm. 2019;34(10):605–613.
  • Kocaturk NM, Akkoc Y, Kig C, et al. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019;134:116–137.
  • Zhang H, Zhang YQ, Zhu XY, et al. DEAD box protein 5 inhibits liver tumorigenesis by stimulating autophagy via interaction with p62/SQSTM1. Hepatology. 2019;69(3):1046–1063.
  • Liu KS, Ren TT, Huang Y, et al. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis. 2017;8(8):e3015.
  • Yang ZM, Yang MF, Yu W, et al. Molecular mechanisms of estrogen receptor β-induced apoptosis and autophagy in tumors: implication for treating osteosarcoma. J Int Med Res. 2019;47(10):4644–4655.
  • Zhao GS, Tang XF, Lv YF, et al. TSSC3 promotes autophagy via inactivating the Src-mediated PI3k/Akt/mTOR pathway to suppress tumorigenesis and metastasis in osteosarcoma, and predicts a favorable prognosis. J Exp Clin Cancer Res. 2018;37(1):188.
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222.
  • Ji QB, Xu XJ, Song Q, et al. miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. Mol Ther. 2018;26(5):1299–1312.
  • Shi YK, Guo YH. MiR-139-5p suppresses osteosarcoma cell growth and invasion through regulating DNMT1. Biochem Biophys Res Commun. 2018;503(2):459–466.
  • Lv ZZ, Ma JM, Wang JC, et al. MicroRNA-761 targets FGFR1 to suppress the malignancy of osteosarcoma by deactivating PI3k/Akt pathway. Onco Targets Ther. 2019;12:8501–8513.
  • Gado MM, Mousa NO, Badawy MA, et al. Assessment of the diagnostic potential of miR-29a-3p and miR-92a-3p as circulatory biomarkers in acute myeloid Leukemia. Asian Pac J Cancer Prev. 2019;20(12):3625–3633.
  • Su JL, Lu EY, Lu LJ, et al. miR-29a-3p suppresses cell proliferation in laryngocarcinoma by targeting prominin 1. FEBS Open Bio. 2017;7(5):645–651.
  • Ma YF, Sun Y. miR-29a-3p inhibits growth, proliferation, and invasion of papillary thyroid carcinoma by suppressing NF-κB signaling via direct targeting of OTUB2. Cancer Manag Res. 2018;11:13–23.
  • Cevenini A, Orrù S, Mancini A, et al. Molecular signatures of the insulin-like growth factor 1-mediated epithelial-mesenchymal transition in breast, lung and gastric cancers. Int J Mol Sci. 2018;19(8):2411.
  • Lei T, Ling X. IGF-1 promotes the growth and metastasis of hepatocellular carcinoma via the inhibition of proteasome-mediated cathepsin B degradation. World J Gastroenterol. 2015;21(35):10137–10149.
  • Dang XG, Li XQ, Wang L, et al. MicroRNA-3941 targets IGF-1 to regulate cell proliferation and migration of breast cancer cells. Int J Clin Exp Pathol. 2017;10(7):7650–7660.
  • Yakar S, Werner H, Rosen CJ. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol. 2018;61(1):T115–T137.
  • Chen SX, Du ZP, Wu BL, et al. STAT1, IGF1, RAC1, and MDM2 are associated with recurrence of giant cell tumor of bone. J Immunol Res. 2018;2018:4564328.
  • Gao SM, Cheng C, Chen HW, et al. IGF1 3ʹUTR Functions as a ceRNA in promoting angiogenesis by Sponging miR-29 family in osteosarcoma. J Mol Histol. 2016;47(2):135–143.
  • Mao JS, Zhuang GY, Chen ZK. Genetic polymorphisms of insulin-like growth factor 1 are associated with osteosarcoma risk and prognosis. Med Sci Monit. 2017;23:5892–5898.
  • Tan XY, Fan SC, Wen W, et al. MicroRNA-26a inhibits osteosarcoma cell proliferation by targeting IGF-1. Bone Res. 2015;3(1):15033.
  • Spangle JM, Roberts TM, Zhao JJ. The emerging role of PI3k/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta Rev Cancer. 2017;1868(1):123–131.
  • Tang YB, Pan JC, Huang S, et al. Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3k/AKT signaling. J Exp Clin Cancer Res. 2018;37(1):160.
  • Chen Y, Zheng ZY, Yang JZ, et al. MicroRNA-191-5p promotes the development of osteosarcoma via targeting EGR1 and activating the PI3k/AKT signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(9):3611–3620.
  • Zhao XW, Li J, Yu DP. MicroRNA-939-5p directly targets IGF-1R to inhibit the aggressive phenotypes of osteosarcoma through deactivating the PI3k/Akt pathway. Int J Mol Med. 2019;44(5):1833–1843.
  • Zhu DD, Yuan DL, Guo RF, et al. Overexpression of miR-148a inhibits viability and invasion of ovarian cancer OVCAR3 cells by targeting FOXO3. Oncol Lett. 2019;18(1):402–410.
  • Zhang HY, Zhang Z, Wang SR, et al. The mechanisms involved in mir-9 regulated apoptosis in cervical cancer by targeting FOXO3. Biomed Pharmacother. 2018;102:626–632.
  • Fitzwalter BE, Thorburn A. FOXO3 links autophagy to apoptosis. Autophagy. 2018;14(8):1467–1468.
  • Park SH, Lee JS, Kang MA, et al. Mitoxantrone induces apoptosis in osteosarcoma cells through regulation of the Akt/FOXO3 pathway. Oncol Lett. 2018;15(6):9687–9696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.