446
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

SMAR1 inhibits proliferation, EMT and Warburg effect of bladder cancer cells by suppressing the activity of the Wnt/β-catenin signaling pathway

, , , , , & show all
Pages 229-241 | Received 27 Dec 2021, Accepted 08 Aug 2022, Published online: 18 Aug 2022

References

  • Li J, Huang S, Zhang Y, et al. LINC00460 enhances bladder carcinoma cell proliferation and migration by modulating miR-612/FOXK1 axis. Pharmacology. 2021;106(1–2):79–90. DOI:10.1159/000509255
  • Zhou Q, Yu J, Zheng Q, et al. Kinesin family member 3A stimulates cell proliferation, migration, and invasion of bladder cancer cells in vitro and in vivo. FEBS Open Bio. 2021;11(5):1487–1496. DOI:10.1002/2211-5463.12768
  • Zhang Z, Chen F, Zhan H, et al. lncRNA CASC9 sponges miR‑758‑3p to promote proliferation and EMT in bladder cancer by upregulating TGF‑β2. Oncol Rep. 2021;45(1):265–277. DOI:10.3892/or.2020.7852
  • Li Y, et al. microRNA-27b inhibits cell proliferation and invasion in bladder cancer by targeting engrailed-2. Biosci Rep. 2021;41(1):BSR20201000.
  • Tang C, Wu Y, Wang X, et al. LncRNA MAFG-AS1 regulates miR-125b-5p/sphk1 axis to promote the proliferation, migration, and invasion of bladder cancer cells. Hum Cell. 2021;34(2):588–597. DOI:10.1007/s13577-020-00470-3
  • Liu HC, Ma F, Shen Y, et al. Overexpression of SMAR1 enhances radiosensitivity in human breast cancer cell line MCF7 via activation of p53 signaling pathway. Oncol Res. 2014;22(5):293–300. DOI:10.3727/096504015X14424348426035
  • Choksi A, Parulekar A, Pant R, et al. Tumor suppressor SMAR1 regulates PKM alternative splicing by HDAC6-mediated deacetylation of PTBP1. Cancer Metab. 2021;9(1):16. DOI:10.1186/s40170-021-00252-x
  • Alam A, Taye N, Patel S, et al. SMAR1 favors immunosurveillance of cancer cells by modulating calnexin and MHC I expression. Neoplasia. 2019;21(10):945–962. DOI:10.1016/j.neo.2019.07.002
  • Xu H, Liu T, Li W, et al. SMAR1 attenuates the stemness of osteosarcoma cells via through suppressing ABCG2 transcriptional activity. Environ Toxicol. 2021;36(6):1090–1098. DOI:10.1002/tox.23108
  • Bhattacharya A, et al. SMAR1 repression by pluripotency factors and consequent chemoresistance in breast cancer stem-like cells is reversed by aspirin. Sci Signal. 2020;13(654):eaay6077.
  • Kaul R, Mukherjee S, Ahmed F, et al. Direct interaction with and activation of p53 by SMAR1 retards cell-cycle progression at G2/M phase and delays tumor growth in mice. Int J Cancer. 2003;103(5):606–615. DOI:10.1002/ijc.10881
  • Chakraborty S, Adhikary A, Mazumdar M, et al. Capsaicin-Induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis. PLoS One. 2014;9(6):e99743. DOI:10.1371/journal.pone.0099743
  • Adhikary A, Chakraborty S, Mazumdar M, et al. Inhibition of epithelial to mesenchymal transition by E-cadherin up-regulation via repression of slug transcription and inhibition of E-cadherin degradation: dual role of scaffold/matrix attachment region-binding protein 1 (SMAR1) in breast cancer cells. J Biol Chem. 2014;289(37):25431–25444. DOI:10.1074/jbc.M113.527267
  • Paul D, Ghorai S, Dinesh US, et al. Cdc20 directs proteasome-mediated degradation of the tumor suppressor SMAR1 in higher grades of cancer through the anaphase promoting complex. Cell Death Dis. 2017;8(6):e2882. DOI:10.1038/cddis.2017.270
  • Taye N, Alam A, Ghorai S, et al. SMAR1 inhibits Wnt/β-catenin signaling and prevents colorectal cancer progression. Oncotarget. 2018;9(30):21322–21336. DOI:10.18632/oncotarget.25093
  • Huang H, Fan X, Zhang X, et al. LncRNA CARLo-7 facilitates proliferation, migration, invasion, and EMT of bladder cancer cells by regulating Wnt/β-catenin and JAK2/STAT3 signaling pathways. Transl Androl Urol. 2020;9(5):2251–2261. DOI:10.21037/tau-20-1293
  • Wang T, Wang M, Fang S, et al. Fibulin-4 is associated with prognosis of endometrial cancer patients and inhibits cancer cell invasion and metastasis via Wnt/β-catenin signaling pathway. Oncotarget. 2017;8(12):18991–19012. DOI:10.18632/oncotarget.15086
  • Kwak S, Park S-H, Kim S-H, et al. miR-3189-Targeted GLUT3 repression by HDAC2 knockdown inhibits glioblastoma tumorigenesis through regulating glucose metabolism and proliferation. J Exp Clin Cancer Res. 2022;41(1):87. DOI:10.1186/s13046-022-02305-5
  • Rampalli S, Pavithra L, Bhatt A, et al. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Mol Cell Biol. 2005;25(19):8415–8429. DOI:10.1128/MCB.25.19.8415-8429.2005
  • Singh K, Sinha S, Malonia SK, et al. Tumor suppressor SMAR1 represses IκBα expression and inhibits p65 transactivation through matrix attachment regions. J Biol Chem. 2009;284(2):1267–1278. DOI:10.1074/jbc.M801088200
  • Pavithra L, Singh S, Sreenath K, et al. Tumor suppressor SMAR1 downregulates Cytokeratin 8 expression by displacing p53 from its cognate site. Int J Biochem Cell Biol. 2009;41(4):862–871. DOI:10.1016/j.biocel.2008.08.038
  • Loh, C-Y., Chai, J., et al. The E-Cadherin and N-Cadherin switch in Epithelial-to-Mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118. DOI:10.3390/cells8101118
  • Na, T.Y., Schecterson, L., Mendonsa, A M., et al. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci USA. 2020;117(11):5931–5937. DOI:10.1073/pnas.1918167117
  • Vávrová, J., M. Rezáčová. Importance of proapoptotic protein PUMA in cell radioresistance. Folia Biol (Praha). 2014;60(2):53–56.
  • Xu, Z., Shao, J., Zheng, C., et al. The E3 ubiquitin ligase RBCK1 promotes the invasion and metastasis of hepatocellular carcinoma by destroying the PPARγ/PGC1α complex. Am J Cancer Res. 2022;12(3):1372–1392.
  • Lunt, S.Y., M.G. Vander Heiden. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–464.
  • Shen, J., Jin, Z., Lv, H., et al. PFKP is highly expressed in lung cancer and regulates glucose metabolism. Cell Oncol (Dordr). 2020;43(4):617–629. DOI:10.1007/s13402-020-00508-6
  • Mou, J.J., Peng, J., Shi, Y-Y., et al. Mitochondrial DNA content reduction induces aerobic glycolysis and reversible resistance to drug-induced apoptosis in SW480 colorectal cancer cells. Biomed Pharmacother. 2018;103:729–737.
  • Bugter, J.M., N. Fenderico. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer. 2021;21(1):5–21.
  • Zhan, Y., Zhang, L., Yu, S., et al. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/β-catenin signaling pathway in bladder cancer. J Exp Clin Cancer Res. 2020;39(1):136. DOI:10.1186/s13046-020-01624-9
  • Zhang, M., Du, H., Wang, Lu, et al. Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chem Biol Interact. 2020;320:109022.
  • Yoshida, T., Sopko, N A., Kates, M., et al. Three-Dimensional organoid culture reveals involvement of Wnt/β-catenin pathway in proliferation of bladder cancer cells. Oncotarget. 2018;9(13):11060–11070. DOI:10.18632/oncotarget.24308
  • He, S., S. Tang. WNT/β-Catenin signaling in the development of liver cancers. Biomed Pharmacother. 2020;132:110851.
  • Shang, S., F. Hua, Z.W. Hu. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8(20):33972–33989.
  • Urakami, S., Shiina, H., Enokida, H., et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/β-Catenin signaling pathway. Clin Cancer Res. 2006;12(2):383–391. DOI:10.1158/1078-0432.CCR-05-1344
  • Vallée, A., Y. Lecarpentier. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-Catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 2018;9:745.
  • Fu, J., Liu, Y., Wang, X., et al. Role of DHX33 in c-Myc-induced cancers. Carcinogenesis. 2017;38(6):649–660. DOI:10.1093/carcin/bgx041
  • Sun, J., Zhang, H., Tao, D., et al. CircCDYL inhibits the expression of C-MYC to suppress cell growth and migration in bladder cancer. Artif Cells Nanomed Biotechnol. 2019;47(1):1349–1356. DOI:10.1080/21691401.2019.1596941
  • Mizushima, S., Sasanami, T., Ono, T., et al. Cyclin D1 gene expression is essential for cell cycle progression from the maternal-to-zygotic transition during blastoderm development in Japanese quail. Dev Biol. 2021;476:249–258.
  • Wang, H., J. Wang, B. Zhao. Correlation of p16 and Cyclin D1 expression with the incidence and prognosis of cardiac carcinoma. Oncol Lett. 2019;17(6):4859–4864.
  • Jiao, J., Huang, Lu, Ye, F., et al. Cyclin D1 affects epithelial-mesenchymal transition in epithelial ovarian cancer stem cell-like cells. Onco Targets Ther. 2013;6:667–677.
  • Pavithra, L., Rampalli, S., Sinha, S., et al. Stabilization of SMAR1 mRNA by PGA2 involves a stem–loop structure in the 5′ UTR. Nucleic Acids Res. 2007;35(18):6004–6016. DOI:10.1093/nar/gkm649
  • Wu, Z., Zhou, Z., Zhang, W., et al. MiR-21-5p inhibition attenuates Warburg effect and stemness maintenance in osteosarcoma cells via inactivation of Wnt/β-catenin signaling. Acta Biochim Pol. 2021;68(4):725–732. DOI:10.18388/abp.2020_5631
  • Cha, P.H., Hwang, J-H., Kwak, D-K., et al. APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer. Br J Cancer. 2021;124(3):634–644. DOI:10.1038/s41416-020-01118-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.