493
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Inhibition of farnesyl pyrophosphate synthase alleviates cardiomyopathy in diabetic rat

, , &
Pages 666-679 | Received 30 May 2022, Accepted 18 Oct 2022, Published online: 30 Oct 2022

References

  • Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA. 1974;229(13):1749–1754.
  • Paolillo S, Marsico F, Prastaro M, et al. Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications. Heart Fail Clin. 2019;15(3):341–347. DOI:10.1016/j.hfc.2019.02.003
  • Alonso N, Moliner P, Mauricio D, et al. Clinical features and treatment of diabetic cardiomyopathy. Adv Exp Med Biol. 2018; 1067.197–217. DOI:10.1007/5584_2017_105
  • Liu XW, Jin H-F, Du C-Q, et al. Farnesyl pyrophosphate synthase blocker ibandronate reduces thoracic aortic fibrosis in diabetic rats. Am J Med Sci. 2019;357(4):323–332. DOI:10.1016/j.amjms.2019.01.014
  • Yang J, Zhu H-H, Chen G-P, et al. Inhibition of farnesyl pyrophosphate synthase attenuates angiotensin II-induced cardiac hypertrophy and fibrosis in vivo. Int J Biochem Cell Biol. 2013;45(3):657–666. DOI:10.1016/j.biocel.2012.12.016
  • Tang H, Xue G. Major physiological signaling pathways in the regulation of cell proliferation and survival. Handb Exp Pharmacol. 2018;249:13–30.
  • Turner NA, Blythe NM. Cardiac fibroblast p38 MAPK: a critical regulator of myocardial remodeling. J Cardiovasc Dev Dis. 2019;6(3):27.
  • Liao HH, Zhang N, Meng Y-Y, et al. Myricetin alleviates pathological cardiac hypertrophy via TRAF6/TAK1/MAPK and Nrf2 signaling pathway. Oxid Med Cell Longev. 2019;2019:6304058.
  • Du CQ, Yang L, Yang J, et al. Inhibition of farnesyl pyrophosphate synthase prevents norepinephrine–induced fibrotic responses in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertens Res. 2014;37(1):26–34. DOI:10.1038/hr.2013.96
  • Ti Y, Xie G-L, Wang Z-H, et al. TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes. 2011;60(11):2963–2974. DOI:10.2337/db11-0549
  • Kanda T, Hayashi K, Wakino S, et al. Role of Rho-kinase and p27 in angiotensin II–induced vascular injury. Hypertension. 2005;45(4):724–729. DOI:10.1161/01.HYP.0000153316.59262.79
  • Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2016;29(4):277–314. DOI:10.1016/j.echo.2016.01.011
  • Sun M, Chen M, Dawood F, et al. Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation. 2007;115(11):1398–1407. DOI:10.1161/CIRCULATIONAHA.106.643585
  • 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S15–33. DOI:10.2337/dc21-S002
  • Kane JP, Pullinger CR, Goldfine ID, et al. Dyslipidemia and diabetes mellitus: role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Curr Opin Pharmacol. 2021;61:21–27.
  • Kryzhanovskii SA, Kolik LG, Tsorin IB, et al. Evidence of echocardiography validity in model experiments on small animals. Bull Exp Biol Med. 2016;161(3):434–438. DOI:10.1007/s10517-016-3432-0
  • Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–638.
  • Hu X, Bai T, Xu Z, et al. Pathophysiological fundamentals of diabetic cardiomyopathy. Compr Physiol. 2017;7(2):693–711.
  • Dillmann WH. Diabetic cardiomyopathy. Circ Res. 2019;124(8):1160–1162.
  • Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Ther Adv Endocrinol Metab. 2019;10:2042018819834869.
  • Mascherbauer J, Zotter-Tufaro C, Duca F, et al. Wedge pressure rather than left ventricular end-diastolic pressure predicts outcome in heart failure with preserved ejection fraction. JACC Heart Fail. 2017;5(11):795–801. DOI:10.1016/j.jchf.2017.08.005
  • Li L, Chen G-P, Yang Y, et al. Chronic inhibition of farnesyl pyrophosphate synthase attenuates cardiac hypertrophy and fibrosis in spontaneously hypertensive rats. Biochem Pharmacol. 2010;79(3):399–406. DOI:10.1016/j.bcp.2009.08.033
  • Guanabens N, Monegal A, Cerdá D, et al. Randomized trial comparing monthly ibandronate and weekly alendronate for osteoporosis in patients with primary biliary cirrhosis. Hepatology. 2013;58(6):2070–2078. DOI:10.1002/hep.26466
  • Keating GM. Ibandronate: a review in Japanese patients with osteoporosis. Drugs Aging. 2016;33(4):295–303.
  • Chen GP, Zhang X-Q, Wu T, et al. Alteration of mevalonate pathway in proliferated vascular smooth muscle from diabetic mice: possible role in high-glucose-induced atherogenic process. J Diabetes Res. 2015;2015:379287.
  • Li Z, Zhang J, Wang M, et al. Expression of farnesyl pyrophosphate synthase is increased in diabetic cardiomyopathy. Cell Biol Int. 2021;45(7):1393–1403. DOI:10.1002/cbin.11573
  • Liang YJ, Yang WX. Kinesins in MAPK cascade: how kinesin motors are involved in the MAPK pathway? Gene. 2019;684:1–9.
  • Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9(8):537–549.
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.
  • Papakrivopoulou J, E Lindahl G, E Bishop J, et al. Differential roles of extracellular signal-regulated kinase 1/2 and p38mapk in mechanical load-induced procollagen alpha1(i) gene expression in cardiac fibroblasts. Cardiovasc Res. 2004;61(4):736–744. DOI:10.1016/j.cardiores.2003.12.018
  • Tomlinson DR. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia. 1999;42(11):1271–1281.
  • Ehrig JC, Afroze SH, Reyes M, et al. A p38 mitogen-activated protein kinase inhibitor attenuates cardiotonic steroids-induced apoptotic and stress signaling in a Sw-71 cytotrophoblast cell line. Placenta. 2015;36(11):1276–1282. DOI:10.1016/j.placenta.2015.08.016
  • Zhuo J, Zeng Q, Cai D, et al. Evaluation of type 2 diabetic mellitus animal models via interactions between insulin and mitogen‑activated protein kinase signaling pathways induced by a high fat and sugar diet and streptozotocin. Mol Med Rep. 2018;17(4):5132–5142. DOI:10.3892/mmr.2018.8504
  • Tang M, Zhang W, Lin H, et al. High glucose promotes the production of collagen types I and III by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol Cell Biochem. 2007;301(1–2):109–114. DOI:10.1007/s11010-006-9401-6
  • Dai B, Cui M, Zhu M, et al. STAT1/3 and ERK1/2 synergistically regulate cardiac fibrosis induced by high glucose. Cell Physiol Biochem. 2013;32(4):960–971. DOI:10.1159/000354499
  • Flentje A, Kalsi R, Monahan TS. Small GTPases and their role in vascular disease. Int J Mol Sci. 2019;20(4):917.
  • Ishiko K, Sakoda T, Akagami T, et al. Hyperglycemia induced cell growth and gene expression via the serum response element through RhoA and Rho-kinase in vascular smooth muscle cells. Prep Biochem Biotechnol. 2010;40(2):139–151. DOI:10.1080/10826060903558927
  • Tang J, KUSAKA I, MASSEY AR, et al. Increased RhoA translocation in aorta of diabetic rats. Acta Pharmacol Sin. 2006;27(5):543–548. DOI:10.1111/j.1745-7254.2006.00325.x
  • Cheng CI, Lee Y-H, Chen P-H, et al. Cobalt chloride induces RhoA/ROCK activation and remodeling effect in H9c2 cardiomyoblasts: involvement of PI3K/Akt and MAPK pathways. Cell Signal. 2017;36:25–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.