231
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

MicroRNA-455-3p accelerate malignant progression of tumor by targeting H2AFZ in colorectal cancer

, , , , , , , & show all
Pages 777-795 | Received 19 Oct 2021, Accepted 10 Oct 2022, Published online: 08 Dec 2022

References

  • International agency for research on cancer W. https://www.iarc.who.int. 2021.
  • International agency for research on cancer W. global cancer observatory. https://gcoiarcfr/2020.
  • Li N, Lu B, Luo C, et al. Incidence, mortality, survival, risk factor and screening of colorectal cancer: a comparison among China, Europe, and Northern America. Cancer Lett. 2021;522:255–268.
  • Zhou J, Zheng R, Zhang S, et al. Colorectal cancer burden and trends: comparison between China and major burden countries in the world. Chin J Canc Res. 2021;33(1):1–10. DOI:10.21147/j.issn.1000-9604.2021.01.01
  • Cardoso R, Guo F, Heisser T, et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: an international population-based study. Lancet Oncol. 2021;22(7):1002–1013. DOI:10.1016/S1470-2045(21)00199-6
  • Siegel R, Miller K, Goding S, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–164. DOI:10.3322/caac.21601
  • Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol. 2012;13(8):790–801. DOI:10.1016/S1470-2045(12)70211-5
  • Zorzi M, Battagello J, Fiore A, et al. Colorectal cancer incidence and mortality after negative fecal immunochemical tests by age 70: a prospective observational study. Int J Cancer. 2021;149(6):1257–1265. DOI:10.1002/ijc.33682
  • Karen S, Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging. 2016;11:967–976.
  • Faezeh S, Mansour J, Pedram E. Synthesis of novel polymeric nanoparticles (methoxy-polyethylene glycol-chitosan/hyaluronic acid) containing 7-ethyl-10-hydroxycamptothecin for colon cancer therapy: in vitro, ex vivo and in vivo investigation. Artif Cells Nanomed Biotechnol. 2021;49(1):367–380.
  • Heping Z, Shilong Y, Bingluo Z, et al. Design, synthesis, and evaluation of novel coumarin-dithiocarbamate derivatives (IDs) as anti-colorectal cancer agents. J Enzyme Inhib Med Chem. 2021;36(1):539–604. DOI:10.1080/14756366.2021.1875458
  • Tang C, Liu J, Hu Q, et al. Metastatic colorectal cancer: perspectives on long non-coding RNAs and promising therapeutics. Eur J Pharmacol. 2021;908:174367.
  • Sandro S, Stala K, Despina I, et al. Testing messages from behavioral economics to improve participation in a population-based colorectal cancer screening program in Cyprus: results from two randomized controlled trials. Prev Med Rep. 2021;24:101499.
  • Zhu X, Parks P, Weiser E, et al. Barriers to utilization of three colorectal cancer screening options - data from a national survey. Prev Med Rep. 2021;24:101508.
  • Rioux B, Pion A, Gamond A, et al. Synthesis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur J Med Chem. 2021;222:113586.
  • Meng Y, Long C, Huang X, et al. Prognostic role and clinical significance of C-reactive protein-lymphocyte ratio in colorectal cancer. Bioengineered. 2021;12(1):5138–5148. DOI:10.1080/21655979.2021.1960768
  • Rasool M, Carracedo A, Sibiany A, et al. Discovery of a novel and a rare Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutation in colorectal cancer patients. Bioengineered. 2021;12(1):5099–5109. DOI:10.1080/21655979.2021.1960715
  • Ai L, Luo X, Yan X, et al. MicroRNA-506-3p inhibits colorectal cancer cell proliferation through targeting enhancer of zeste homologue 2. Bioengineered. 2021;12(1):4044–4053. DOI:10.1080/21655979.2021.1951930
  • Siegel R, Miller K, Anderson J, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–164. DOI:10.3322/caac.21601
  • Mariana C, Dórea, Galdino AS, et al. Carcinoembryonic antigen (CEA) and hepatic metastasis in colorectal cancer: update on biomarker for clinical and biotechnological approaches. Recent Pat Biotechnol. 2018;12(4):11. DOI:10.2174/1872208312666180731104244
  • Bhullar D, Barriuso J, Mullamitha S, et al. Biomarker concordance between primary colorectal cancer and its metastases. EBioMedicine. 2019;40:363–374.
  • Ni Y, Xie G, Jia W. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014;13(9):3857–3870.
  • Lech G, Slotwinski R, Slodkowski M, et al. Colorectal cancer tumour markers and biomarkers: recent therapeutic advances. World J Gastroenterol. 2016;22(5):1745–1755. DOI:10.3748/wjg.v22.i5.1745
  • Zhang X, Sun X, Cao Y, et al. CBD: a biomarker database for colorectal cancer. Database (Ox-Ford). 2018. DOI:10.1093/database/bay046.
  • Cho W, Kim M, Park J, et al. Exosomal miR-193a and let-7g accelerate cancer progression on primary colorectal cancer and paired peritoneal metastatic cancer. Transl Oncol. 2021;14(2):101000. DOI:10.1016/j.tranon.2020.101000
  • Tutar Y. miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol. 2014;15(5):429.
  • Ankit T, Manjusha D, Dixit M. MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets. 2018;18(3):12.
  • Rameshwar O. Human aging and cancer: role of miRNA in tumor microenvironment. Exosome Stem Cells MicroRna. 2018;1056(6):137.
  • Correia M, Gjorgjieva M, Dolicka D, et al. Deciphering miRnas’ action through miRNA editing. Int J Mol Sci. 2019;20(24):6249. DOI:10.3390/ijms20246249
  • Chen L, Heikkinen L, Wang C, et al. Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2019;20(5):1836–1852. DOI:10.1093/bib/bby054
  • Wu M, Tian W, Deng Y, et al. MiRNA-based therapeutics for lung cancer. Curr Pharm Des. 2018;23(39):8. DOI:10.2174/1381612823666170714151715
  • Rani A. MiRNA biogenesis and regulation of diseases: an Overview. microRna Profiling. 2016;1509:11.
  • Lu T, Rothenberg M. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207.
  • Mishra S, Yadav T, Rani V. Exploring miRNA-based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol. 2016;98:12–23.
  • Di L, Garofalo M, Croce C. MicroRnas in cancer. Annu Rev Pathol. 2014;9(1):287–314.
  • Roosbroeck V, Calin G. Cancer hallmarks and MicroRnas: the therapeutic connection. Adv Cancer Res. 2017;135:119–149.
  • Acunzo M, Romano G, Wernicke D, et al. MicroRNA and cancer–a brief overview. Adv Biol Regul. 2015;57:1–9.
  • Pf SR, Lawrence M. The role of miR-21 in cancer. Drug Dev Res. 2015;76(6):8.
  • Ali S, Langden S, Munkhzul C, et al. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723. DOI:10.3390/ijms21051723
  • Fridrichova I, Zmetakova I. MicroRnas contribute to breast cancer invasiveness. Cells. 2019;8(11):1361.
  • Rupaimoole R, Slack F. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222.
  • Lee Y, Dutta A. MicroRnas in cancer. Annu Rev Pathol. 2009;4(1):199–227.
  • Kim T, Lee Y, Yun N, et al. MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. Br J Cancer. 2020;123(7):1123–1130. DOI:10.1038/s41416-020-0940-5
  • Wang F, Chan L, Law H, et al. Exploring microRNA-mediated alteration of EGFR signaling pathway in non-small cell lung cancer using an mRna:miRNA regression model supported by target prediction data-bases. Genomics. 2014;104(6 Pt B):504–511. DOI:10.1016/j.ygeno.2014.09.004
  • Kozomara A, Griffiths-Jones S. Griffiths-Jones S. miRbase: annotating high confidence microRnas using deep sequencing data. Nucl Acids Res. 2014;43:68–73.
  • Kozomara A, Birgaoanu M. Griffiths-Jones S. miRbase: from microRNA sequences to function. Nucl Acids Res. 2014;43:68–73.
  • Zhan T, Zhu Q, Han Z, et al. miR-455-3p Functions as a tumor suppressor by restraining wnt/beta-catenin signaling via taz in pancreatic cancer. Cancer Manag Res. 2020;12:1483–1492.
  • Yi X, Wang Y, Xu S. MiR-455-3p downregulation facilitates cell proliferation and invasion and predicts poor prognosis of osteosarcoma. J Orthop Surg Res. 2020;15(1):454.
  • Guo J, Liu C, Wang W, et al. Identification of serum miR-1915-3p and miR-455-3p as biomarkers for breast cancer. PLoS ONE. 2018;13(7):e0200716. DOI:10.1371/journal.pone.0200716
  • Zheng J, Lin Z, Zhang L, et al. microRNA-455-3p inhibits tumor cell proliferation and induces apoptosis in HCT116 human colon cancer cells. Med Sci Monit. 2016;22:4431–4437.
  • Li Z, Wu A, Pan X, et al. MicroRNA-455-3p promotes invasion and migration in triple negative breast cancer by targeting tumor suppressor EI24. Oncotarget. 2017;8(12):12. DOI:10.18632/oncotarget.14307
  • Zhang L, Zhu N, Tsoi H, et al. microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol cancer. 2014;13:12.
  • Xin H, Chi Y, Liu Z. MicroRNA-196b-5p promotes malignant progression of colorectal cancer by targeting ING5. Cancer Cell Int. 2020;20(119). DOI:10.1186/s12935-020-01200-3
  • Xu X, Lai Y, Hua Z. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39(1). DOI:10.1042/BSR20180992
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):22.
  • Batlle E, Sancho E, Francí C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–89. DOI:10.1038/35000034
  • Paul J, Acloque H, Ruby Y, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–890. DOI:10.1016/j.cell.2009.11.007
  • Liu C, Lin H, Tang M, et al. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget. 2015;6(18):15966–15983. DOI:10.18632/oncotarget.3862
  • Dave J, Bayless K. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation. 2014;21(4):12.
  • Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68(18):3033–3046.
  • Qi L, Zhou B, Chen J, et al. Significant prognostic values of differentially expressed-aberrantly methylated hub genes in breast cancer. J Cancer. 2019;10(26):6618–6634. DOI:10.7150/jca.33433
  • Semer M, Bidon B, Larnicol A, et al. DNA repair complex licenses acetylation of H2A.Z.1 by KAT2A during transcription. Nat Chem Biol. 2019;15(10):992–1000. DOI:10.1038/s41589-019-0354-y
  • Farris S, Rubio E, Moon J, et al. Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J Biol Chem. 2005;280(26):25298–25303. DOI:10.1074/jbc.M501784200
  • Punzeler S, Link S, Wagner G, et al. Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation. EMBO J. 2017;36(15):2263–2279. DOI:10.15252/embj.201695757
  • Stasevich E, Murashko M, Zinevich L, et al. The role of non-coding RNAs in the regulation of the proto-oncogene myc in different types of cancer. Biomedicines. 2021;9:921.
  • Yang H, Kim P, Eun J, et al. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer. Oncotarget. 2016;7(10):12. DOI:10.18632/oncotarget.7194
  • Baptista T, Graça I, Sousa E, et al. Regulation of histone H2A.Z expression is mediated by sirtuin 1 in prostate cancer. Oncotarget. 2013;4(10):1673–1685. DOI:10.18632/oncotarget.1237
  • Rachel A, Battaglia S, Harald H, et al. Vimentin on the move: new developments in cell migration. F1000Res. 2018;7:10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.