1,206
Views
1
CrossRef citations to date
0
Altmetric
Review

RNA methylation and cellular response to oxidative stress-promoting anticancer agents

ORCID Icon, ORCID Icon & ORCID Icon
Pages 870-905 | Received 28 Oct 2022, Accepted 03 Jan 2023, Published online: 17 Jan 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249.
  • Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4:737–747.
  • Kachalaki S, Ebrahimi M, Mohamed Khosroshahi L, et al. Cancer chemoresistance; biochemical and molecular aspects: a brief overview. Eur J Pharm Sci off J Eur Fed Pharm Sci. 2016;89:20–30.
  • Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–668.
  • Guo L, Lee Y-T, Zhou Y, et al. Targeting epigenetic regulatory machinery to overcome cancer therapy resistance. Semin Cancer Biol. 2022;83:487–502.
  • Mani DR, Krug K, Zhang B, et al. Cancer proteogenomics: current impact and future prospects. Nat Rev Cancer. 2022;22:298–313.
  • Liu Y, Li Q, Zhou L, et al. Cancer drug resistance: redox resetting renders a way. Oncotarget. 2016;7:42740–42761.
  • Zhang L, Lu Q, Chang C. Epigenetics in Health and Disease. In: Chang C Lu Q editors. Epigenetics Allergy Autoimmune [Internet]. Singapore: Springer Singapore; 2020pp. 3–55. cited 2022 Jul 11. Available from. https://link.springer.co
  • Machnicka MA, Milanowska K, Osman Oglou O, et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 2012;41:D262–267.
  • Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20:303–322.
  • Song H, Liu D, Dong S, et al. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther. 2020;5:193.
  • Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes Dev. 2010;24:1832–1860.
  • Nachtergaele S, He C. The emerging biology of RNA post-transcriptional modifications. RNA Biol. 2017;14:156–163.
  • Lecointe F, Simos G, Sauer A, et al. Characterization of Yeast Protein Deg1 as Pseudouridine Synthase (Pus3) Catalyzing the Formation of Ψ38 and Ψ39 in tRNA Anticodon Loop. J Biol Chem. 1998;273:1316–1323.
  • Bjork GR. A primordial tRNA modification required for the evolution of life? EMBO J. 2001;20:231–239.
  • Gerber AP, Keller W. An Adenosine Deaminase that Generates Inosine at the Wobble Position of tRnas. Science. 1999;286:1146–1149.
  • Dihanich ME, Najarian D, Clark R, et al. Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRnas of Saccharomyces cerevisiae. Mol Cell Biol. 1987;7:177–184.
  • Sloan KE, Warda AS, Sharma S, et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 2017;14:1138–1152.
  • Ben-Shem A, Garreau de Loubresse N, Melnikov S, et al. The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution. Science. 2011;334:1524–1529.
  • Decatur WA, Fournier MJ. rRNA modifications and ribosome function. Trends Biochem Sci. 2002;27:344–351.
  • Krogh N, Jansson MD, Häfner SJ, et al. Profiling of 2′- O -Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res. 2016;44:7884–7895.
  • Birkedal U, Christensen-Dalsgaard M, Krogh N, et al. Profiling of Ribose Methylations in RNA by High-Throughput Sequencing. Angew Chem Int Ed. 2015;54: 451–455.
  • Maden BEH, Corbett ME, Heeney PA, et al. Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie. 1995;77:22–29.
  • Bakin A, Ofengand J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry. 1993;32:9754–9762.
  • King TH, Liu B, McCully RR, et al. Ribosome Structure and Activity are Altered in Cells Lacking snoRnps that Form Pseudouridines in the Peptidyl Transferase Center. Mol Cell. 2003;11:425–435.
  • Liang X, Liu Q, Fournier MJ. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA. 2009;15:1716–1728.
  • Baxter-Roshek JL, Petrov AN, Dinman JD. Optimization of Ribosome Structure and Function by rRNA Base Modification. In: Preiss T, editor. PLoS ONE. Vol. 2. 2007. p. e174.
  • Liang X, Liu Q, Fournier MJ. rRNA Modifications in an Intersubunit Bridge of the Ribosome Strongly Affect Both Ribosome Biogenesis and Activity. Mol Cell. 2007;28:965–977.
  • Baudin-Baillieu A, Fabret C, Liang X, et al. Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Res. 2009;37:7665–7677.
  • Andreassi C, Crerar H, Riccio A. Post-transcriptional Processing of mRNA in Neurons: the Vestiges of the RNA World Drive Transcriptome Diversity. Front Mol Neurosci. 2018;11:304.
  • Furuichi Y. Discovery of m7G-cap in eukaryotic mRnas. Proc Jpn Acad Ser B. 2015;91:394–409.
  • Carlile TM, Rojas-Duran MF, Zinshteyn B, et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515:143–146.
  • Lovejoy AF, Riordan DP, Brown PO. Transcriptome-Wide Mapping of Pseudouridines: pseudouridine Synthases Modify Specific mRnas in S. cerevisiae. In: Preiss T, editor. PLoS ONE. Vol. 9. 2014. p. e110799.
  • Li X, Zhu P, Ma S, et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015;11:592–597.
  • He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176.
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71:3971–3975.
  • Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 2013;29:108–115.
  • Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA Modifications in Gene Expression Regulation. Cell. 2017;169:1187–1200.
  • Liu J, Yue Y, Han D, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–95.
  • Jia G, Fu Y, Zhao X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–887.
  • Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–120.
  • Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m6a-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat Commun. 2016;7:12626.
  • Meyer KD, Patil DP, Zhou J, et al. 5′ UTR m6a Promotes Cap-Independent Translation. Cell. 2015;163:999–1010.
  • Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530:441–446.
  • Zhou H, Kimsey IJ, Nikolova EN, et al. M1a and m1g disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs. Nat Struct Mol Biol. 2016;23:803–810.
  • Xue C, Zhao Y, Li L. Advances in RNA cytosine-5 methylation: detection, regulatory mechanisms, biological functions and links to cancer. Biomark Res. 2020;8:43.
  • Sharma S, Yang J, Watzinger P, et al. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res. 2013;41:9062–9076.
  • Schosserer M, Minois N, Angerer TB, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6:6158.
  • Aschenbrenner J, Marx A. Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase. Nucleic Acids Res. 2016;44:3495–3502.
  • Erales J, Marchand V, Panthu B, et al. Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci. 2017;114:12934–12939.
  • Basu A, Das P, Chaudhuri S, et al. Requirement of rRNA Methylation for 80S Ribosome Assembly on a Cohort of Cellular Internal Ribosome Entry Sites. Mol Cell Biol. 2011;31:4482–4499.
  • Jiang X, Liu B, Nie Z, et al. The role of m6a modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6a RNA methylomes revealed by m6a-seq. Nature. 2012;485:201–206.
  • Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–1646.
  • Zhang C, Chen Y, Sun B, et al. M6a modulates haematopoietic stem and progenitor cell specification. Nature. 2017;549:273–276.
  • Lv J, Zhang Y, Gao S, et al. Endothelial-specific m6a modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Res. 2018;28:249–252.
  • Wang H, Zuo H, Liu J, et al. Loss of YTHDF2-mediated m6a-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Res. 2018;28:1035–1038.
  • Gao Y, Vasic R, Song Y, et al. M6a Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity. 2020;52:1007–1021.e8.
  • Ma C, Chang M, Lv H, et al. RNA m6a methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol. 2018;19:68.
  • Li L, Zang L, Zhang F, et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet. 2017;26:2398–2411.
  • Zhuang M, Li X, Zhu J, et al. The m6a reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic Acids Res. 2019;47:4765–4777.
  • Weng Y-L, Wang X, An R, et al. Epitranscriptomic m6a Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron. 2018;97:313–325.e6.
  • Xhemalce B, Robson SC, Kouzarides T. Human RNA Methyltransferase BCDIN3D Regulates MicroRNA Processing. Cell. 2012;151:278–288.
  • Cheray M, Etcheverry A, Jacques C, et al. Cytosine methylation of mature microRnas inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19:36.
  • Alarcón CR, Lee H, Goodarzi H, et al. N6-methyladenosine marks primary microRnas for processing. Nature. 2015;519:482–485.
  • Berulava T, Rahmann S, Rademacher K, et al. N6-Adenosine Methylation in MiRnas. In: Antoniewski C, editor. PLOS ONE. Vol. 10. 2015. p. e0118438.
  • Zhou Y, Kong Y, Fan W, et al. Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother. 2020;131:110731.
  • Wu J, Guo X, Wen Y, et al. N6-Methyladenosine Modification Opens a New Chapter in Circular RNA Biology. Front Cell Dev Biol. 2021;9:709299.
  • Zhang C, Cui H, Huang C, et al. Interactions of circRnas with methylation: an important aspect of circRNA biogenesis and function (Review). Mol Med Rep. 2022;25:169.
  • Pastore B, Hertz HL, Price IF, et al. Pre-piRNA trimming and 2′-O-methylation protect piRnas from 3′ tailing and degradation in C. elegans. Cell Rep. 2021;36:109640.
  • Goh YT, Koh CWQ, Sim DY, et al. METTL4 catalyzes m6am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 2020;48:9250–9261.
  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–295.
  • Shen Z, Wu W, Hazen SL. Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry. 2000;39:5474–5482.
  • Hofer T, Badouard C, Bajak E, et al. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem. 2005;386:333–337.
  • Liu M, Gong X, Alluri RK, et al. Characterization of RNA damage under oxidative stress in Escherichia coli. Biol Chem. 2012;393:123–132.
  • Chen X, Yu H, Li Z, et al. Oxidative RNA Damage in the Pathogenesis and Treatment of Type 2 Diabetes. Front Physiol. 2022;13:725919.
  • Tanaka M, Chock PB, Stadtman ER. Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci, USA. 2007;104:66–71.
  • Willi J, Küpfer P, Evéquoz D, et al. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Res. 2018;46:1945–1957.
  • Leiva LE, Pincheira A, Elgamal S, et al. Modulation of Escherichia coli Translation by the Specific Inactivation of tRnagly Under Oxidative Stress. Front Genet. 2020;11:856.
  • Estevez M, Valesyan S, Jora M, et al. Oxidative Damage to RNA is Altered by the Presence of Interacting Proteins or Modified Nucleosides. Front Mol Biosci. 2021;8:697149.
  • Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol. 2014;49:69–89.
  • Borek E, Srinivasan PR. The Methylation of Nucleic Acids. Annu Rev Biochem. 1966;35:275–298.
  • Wilkinson E, Cui Y-H, He Y-Y. Context-Dependent Roles of RNA Modifications in Stress Responses and Diseases. Int J Mol Sci. 2021;22:1949.
  • Cao SS, Kaufman RJ. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxid Redox Signal. 2014;21:396–413.
  • Zhang H, Gong W, Wu S, et al. Hsp70 in Redox Homeostasis. Cells. 2022;11:829.
  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–383.
  • Juan CA, Pérez de la Lastra JM, Plou FJ, et al. The Chemistry of Reactive Oxygen Species (ROS) Revisited: outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. 2021;22:4642.
  • Zhang L, Wang X, Cueto R, et al. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 2019;26:101284.
  • Lee SY, Kim JJ, Miller KM. Emerging roles of RNA modifications in genome integrity. Brief Funct Genomics. 2021;20:106–112.
  • Samet JM, Wages PA. Oxidative stress from environmental exposures. Curr Opin Toxicol. 2018;7:60–66.
  • Sies H. Oxidative eustress: on constant alert for redox homeostasis. Redox Biol. 2021;41:101867.
  • Agarwalla S, Kealey JT, Santi DV, et al. Characterization of the 23 S Ribosomal RNA m5u1939 Methyltransferase from Escherichia coli. J Biol Chem. 2002;277:8835–8840.
  • Agarwalla S, Stroud RM, Gaffney BJ. Redox Reactions of the Iron-Sulfur Cluster in a Ribosomal RNA Methyltransferase, RumA. J Biol Chem. 2004;279:34123–34129.
  • Kyuma T, Kimura S, Hanada Y, et al. Ribosomal RNA methyltransferases contribute to Staphylococcus aureus virulence. FEBS J. 2015;282:2570–2584.
  • Kyuma T, Kizaki H, Ryuno H, et al. 16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus. Biochimie. 2015;119:166–174.
  • Begley TJ, Rosenbach AS, Ideker T, et al. Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. Mol Cancer Res MCR. 2002;1:103–112.
  • Begley TJ, Rosenbach AS, Ideker T, et al. Hot Spots for Modulating Toxicity Identified by Genomic Phenotyping and Localization Mapping. Mol Cell. 2004;16:117–125.
  • Begley U, Dyavaiah M, Patil A, et al. Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell. 2007;28:860–870.
  • Chan CTY, Pang YLJ, Deng W, et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun. 2012;3:937.
  • Golovina AY, Sergiev PV, Golovin AV, et al. The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA 1 val (cmo 5 UAC). RNA. 2009;15:1134–1141.
  • Osterman IA, Sergiev PV, Tsvetkov PO, et al. Methylated 23S rRNA nucleotide m2g1835 of Escherichia coli ribosome facilitates subunit association. Biochimie. 2011;93:725–729.
  • Jaroensuk J, Atichartpongkul S, Chionh YH, et al. Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruginosa. Nucleic Acids Res. 2016;44:10834–10848.
  • Dedon PC, Begley TJ. A system of RNA modifications and biased codon use controls cellular stress response at the level of translation. Chem Res Toxicol. 2014;27:330–337.
  • Barroso M, Florindo C, Kalwa H, et al. Inhibition of Cellular Methyltransferases Promotes Endothelial Cell Activation by Suppressing Glutathione Peroxidase 1 Protein Expression. J Biol Chem. 2014;289:15350–15362.
  • Schaefer M, Pollex T, Hanna K, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24:1590–1595.
  • Schaefer M, Lyko F. Solving the Dnmt2 enigma. Chromosoma. 2010;119:35–40.
  • Goll MG, Kirpekar F, Maggert KA, et al. Methylation of tRnaasp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311:395–398.
  • Mytych J, Lewinska A, Bielak-Zmijewska A, et al. Nanodiamond-mediated impairment of nucleolar activity is accompanied by oxidative stress and DNMT2 upregulation in human cervical carcinoma cells. Chem Biol Interact. 2014;220:51–63.
  • Chellamuthu A, Gray SG. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells. 2020;9:1758.
  • Blanco S, Dietmann S, Flores JV, et al. Aberrant methylation of t RNA s links cellular stress to neuro‐developmental disorders. EMBO J. 2014;33:2020–2039.
  • Ivanov P, Emara MM, Villen J, et al. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell. 2011;43:613–623.
  • Hertz R, Tovy A, Kirschenbaum M, et al. The Entamoeba histolytica Dnmt2 homolog (Ehmeth) confers resistance to nitrosative stress. Eukaryot Cell. 2014;13:494–503.
  • Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, et al. Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biol. 2017;14:1108–1123.
  • Dewe JM, Fuller BL, Lentini JM, et al. TRMT1-Catalyzed tRNA Modifications are Required for Redox Homeostasis to Ensure Proper Cellular Proliferation and Oxidative Stress Survival. Mol Cell Biol. 2017;37:e00214–17.
  • Endres L, Rose RE, Doyle F, et al. 2’-O-ribose methylation of transfer RNA promotes recovery from oxidative stress in Saccharomyces cerevisiae. In: Preiss T, editor. PLOS ONE. Vol. 15. 2020. p. e0229103.
  • Trixl L, Amort T, Wille A, et al. RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cell Mol Life Sci. 2018;75:1483–1497.
  • Cosentino C, Toivonen S, Diaz Villamil E, et al. Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res. 2018;46:10302–10318.
  • Rashad S, Han X, Sato K, et al. The stress specific impact of ALKBH1 on tRNA cleavage and tiRNA generation. RNA Biol. 2020;17:1092–1103.
  • Zhou J, Wan J, Gao X, et al. Dynamic m(6)a mRNA methylation directs translational control of heat shock response. Nature. 2015;526:591–594.
  • Zhang X, Liu Z, Yi J, et al. The tRNA methyltransferase NSun2 stabilizes p16ink4 mRNA by methylating the 3′-untranslated region of p16. Nat Commun. 2012;3:712.
  • Cai X, Hu Y, Tang H, et al. RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. Oncotarget. 2016;7:19099–19110.
  • Ciciliot S, Fadini G. Modulation of Obesity and Insulin Resistance by the Redox Enzyme and Adaptor Protein p66shc. Int J Mol Sci. 2019;20:985.
  • Yuan S, Tang H, Xing J, et al. Methylation by NSun2 represses the levels and function of microRNA 125b. Mol Cell Biol. 2014;34:3630–3641.
  • Lu C, Zhou D, Wang Q, et al. Crosstalk of MicroRnas and Oxidative Stress in the Pathogenesis of Cancer. Oxid Med Cell Longev. 2020;2020:1–13.
  • Zhao T-X, Wang J-K, Shen L-J, et al. Increased m6a RNA modification is related to the inhibition of the Nrf2-mediated antioxidant response in di-(2-ethylhexyl) phthalate-induced prepubertal testicular injury. Environ Pollut. 2020;259:113911.
  • Arumugam T, Ghazi T, Chuturgoon AA. Fumonisin B1 alters global m6a RNA methylation and epigenetically regulates Keap1-Nrf2 signaling in human hepatoma (HepG2) cells. Arch Toxicol. 2021;95:1367–1378.
  • Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive Oxygen and Nitrogen Species–Induced Protein Modifications: implication in Carcinogenesis and Anticancer Therapy. Cancer Res. 2018;78:6040–6047.
  • Li Q, Li X, Tang H, et al. NSUN2-Mediated m5c Methylation and METTL3/METTL14-Mediated m6a Methylation Cooperatively Enhance p21 Translation: nSUN2 and METTL3/METTL14 R EGULATE p21 T RANSLATION. J Cell Biochem. 2017;118:2587–2598.
  • Chen W, Sun Z, Wang X-J, et al. Direct Interaction between Nrf2 and p21cip1/WAF1 Upregulates the Nrf2-Mediated Antioxidant Response. Mol Cell. 2009;34:663–673.
  • Zhao F, Xu Y, Gao S, et al. METTL3-dependent RNA m6a dysregulation contributes to neurodegeneration in Alzheimer’s disease through aberrant cell cycle events. Mol Neurodegener. 2021;16:70.
  • Gonchar O, Mankovska I. Hypoxia/Reoxygenation modulates Oxidative Stress Level and Antioxidative Potential in Lung Mitochondria: possible participation of P53 and NF-KB Target Proteins. Arch Pulmonol Respir Care. 2017;3:035–043.
  • Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m 6 a modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019;15:1419–1437.
  • Wang J, Zhang J, Ma Y, et al. WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m6a modification of ATF4 mRNA. Aging. 2021;13:11135–11149.
  • Pang P, Qu Z, Yu S, et al. Mettl14 Attenuates Cardiac Ischemia/Reperfusion Injury by Regulating Wnt1/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:762853.
  • Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.
  • Guo Y, Song W, Yang Y. Inhibition of ALKBH5 ‐mediated m 6 a modification of PPARG mRNA alleviates H/R‐induced oxidative stress and apoptosis in placenta trophoblast. Environ Toxicol. 2022;37:910–924.
  • Anders M, Chelysheva I, Goebel I, et al. Dynamic m 6 a methylation facilitates mRNA triaging to stress granules. Life Sci Alliance. 2018;1:e201800113.
  • Protter DSW, Parker R. Principles and Properties of Stress Granules. Trends Cell Biol. 2016;26:668–679.
  • Fu Y, Zhuang X. M6a-binding YTHDF proteins promote stress granule formation. Nat Chem Biol. 2020;16:955–963.
  • Du YD, Guo WY, Han CH, et al. N6-methyladenosine demethylase FTO impairs hepatic ischemia-reperfusion injury via inhibiting Drp1-mediated mitochondrial fragmentation. Cell Death Dis. 2021;12:442.
  • Qu T, Mou Y, Dai J, et al. Changes and relationship of N6-methyladenosine modification and long non-coding RNAs in oxidative damage induced by cadmium in pancreatic β-cells. Toxicol Lett. 2021;343:56–66.
  • Su Q, Chen N, Tang J, et al. Paraquat-induced oxidative stress regulates N6-methyladenosine (m6a) modification of long noncoding RNAs in Neuro-2a cells. Ecotoxicol Environ Saf. 2022;237:113503.
  • Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95–105.
  • Marengo B, Nitti M, Furfaro AL, et al. Redox Homeostasis and Cellular Antioxidant Systems: crucial Players in Cancer Growth and Therapy. Oxid Med Cell Longev. 2016;2016:6235641.
  • Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52:192–203.
  • Safford SE, Oberley TD, Urano M, et al. Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res. 1994;54:4261–4265.
  • Beehler BC, Przybyszewski J, Box HB, et al. Formation of 8-hydroxydeoxyguanosine within DNA of mouse keratinocytes exposed in culture to UVB and H2O2. Carcinogenesis. 1992;13:2003–2007.
  • Lee JK, Edderkaoui M, Truong P, et al. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterol. 2007;133:1637–1648.
  • Seo JM, Cho KJ, Kim EY, et al. Up-regulation of BLT2 is critical for the survival of bladder cancer cells. Exp Mol Med. 2011;43:129–137.
  • Cheng C-W, Kuo C-Y, Fan C-C, et al. Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis. 2013;4:e681.
  • Cao L, Chen X, Xiao X, et al. Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways. Int J Oncol. 2016;49:735–743.
  • Lien G-S, Wu W, Bien M-Y, et al. Epidermal growth factor stimulates nuclear factor-κB activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3K, and Akt in human colon cancer cells. PLoS ONE. 2014;9:e104891.
  • Varghese SS, Sunil PM, Madhavan RN. Expression of inducible nitric oxide synthase (iNOS) in oral precancer and oral squamous cell carcinoma: an immunohistochemical study. Cancer Biomark Sect Dis Markers. 2010;8:155–160.
  • Aydin E, Johansson J, Nazir FH, et al. Role of NOX2-Derived Reactive Oxygen Species in NK Cell-Mediated Control of Murine Melanoma Metastasis. Cancer Immunol Res. 2017;5:804–811.
  • Antony S, Jiang G, Wu Y, et al. NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1α and p27kip1 expression in malignant melanoma and other human tumors. Mol Carcinog. 2017;56:2643–2662.
  • Swick RW, Baumann CA, Miller WL, et al. Tocopherol in tumor tissues and effects of tocopherol on the development of liver tumors. Cancer Res. 1951;11:948–953.
  • Zhao H, Zhu H, Huang J, et al. The synergy of Vitamin C with decitabine activates TET2 in leukemic cells and significantly improves overall survival in elderly patients with acute myeloid leukemia. Leuk Res. 2018;66:1–7.
  • Jaakkola K, Lähteenmäki P, Laakso J, et al. Treatment with antioxidant and other nutrients in combination with chemotherapy and irradiation in patients with small-cell lung cancer. Anticancer Res. 1992;12:599–606.
  • Satoh M, Naganuma A, Imura N. Effect of coadministration of selenite on the toxicity and antitumor activity of cis-diamminedichloroplatinum (II) given repeatedly to mice. Cancer Chemother Pharmacol. 1992;30:439–443.
  • Azmanova M, Pitto-Barry A. Oxidative Stress in Cancer Therapy: friend or Enemy? Chembiochem Eur J Chem Biol. 2022;23:e202100641.
  • Falone S, Santini S, Cordone V, et al. Extremely low-frequency magnetic fields and redox-responsive pathways linked to cancer drug resistance: insights from co-exposure-based in vitro studies. Front Public Health. 2018;6:33.
  • Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med Chem. 2011;11:191–201.
  • Wu S, Lu H, Bai Y. Nrf2 in cancers: a double-edged sword. Cancer Med. 2019;8:2252–2267.
  • Ikehata H, Yamamoto M. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicol Appl Pharmacol. 2018;360:69–77.
  • Xian D, Lai R, Song J, et al. Emerging Perspective: role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. Oxid Med Cell Longev. 2019;2019:8127362.
  • Falone S, Santini S, Cordone V, et al. Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms. Sci Rep. 2017;7:11470.
  • Chern Y-J, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med. 2020;17:842–863.
  • Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–726.
  • Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205:275–292.
  • Debatin K-M, Krammer PH. Death receptors in chemotherapy and cancer. Oncogene. 2004;23:2950–2966.
  • Tirichen H, Yaigoub H, Xu W, et al. Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front physiol. 2021;12:627837.
  • Zhuang C, Zhuang C, Luo X, et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J Cell Mol Med. 2019;23:2163–2173.
  • Mauer J, Sindelar M, Despic V, et al. FTO controls reversible m6am RNA methylation during snRNA biogenesis. Nat Chem Biol. 2019;15:340–347.
  • Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m6am in the 5’ cap controls mRNA stability. Nature. 2017;541:371–375.
  • Chen X, Yu C, Guo M, et al. Down-Regulation of m6a mRNA Methylation is Involved in Dopaminergic Neuronal Death. ACS Chem Neurosci. 2019;10:2355–2363.
  • Liu X, Gonzalez G, Dai X, et al. Adenylate Kinase 4 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an m6a-Based Epitranscriptomic Mechanism. Mol Ther. 2020;28:2593–2604.
  • Lv Y, Li T, Yang M, et al. Melatonin Attenuates Chromium (VI)-Induced Spermatogonial Stem Cell/Progenitor Mitophagy by Restoration of METTL3-Mediated RNA N6-Methyladenosine Modification. Front Cell Dev Biol. 2021;9:684398.
  • Sun R, Tian X, Li Y, et al. The m6a reader YTHDF3-mediated PRDX3 translation alleviates liver fibrosis. Redox Biol. 2022;54:102378.
  • Xu W, Lai Y, Pan Y, et al. M6a RNA methylation-mediated NDUFA4 promotes cell proliferation and metabolism in gastric cancer. Cell Death Dis. 2022;13:715.
  • Zhang X, Li X, Jia H, et al. The m6a methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem. 2021;297:101058.
  • Goffart S, Wiesner RJ. Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol. 2003;88:33–40.
  • Yang B, Chen Q .Cross-Talk between Oxidative Stress and m6a RNA Methylation in Cancer. Oxid Med Cell Longev. 2021:6545728. 2021. doi:10.1155/2021/6545728.
  • Cory JG, Breland JC, Carter GL. Effect of 5-fluorouracil on RNA metabolism in Novikoff hepatoma cells. Cancer Res. 1979;39:4905–4913.
  • Chun K-S, Joo SH. Modulation of Reactive Oxygen Species to Overcome 5-Fluorouracil Resistance. Biomol Ther. 2022. DOI:10.4062/biomolther.2022.017
  • Adhikari S, Bhattacharya A, Adhikary S, et al. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep. 2022;42:BSR20211812.
  • Stein-O’Brien G, Kagohara LT, Li S, et al. Integrated time course omics analysis distinguishes immediate therapeutic response from acquired resistance. Genome Med. 2018;10:37.
  • Gustavsson M, Ronne H. Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast. RNA N Y N. 2008;14:666–674.
  • Kouloulias V, Plataniotis G, Kouvaris J, et al. Chemoradiotherapy combined with intracavitary hyperthermia for anal cancer: feasibility and long-term results from a phase II randomized trial. Am J Clin Oncol. 2005;28:91–99.
  • Okamoto M, Fujiwara M, Hori M, et al. tRNA Modifying Enzymes, NSUN2 and METTL1, Determine Sensitivity to 5-Fluorouracil in HeLa Cells. In: Horwitz M, editor. PLoS Genet. Vol. 10. 2014. p. e1004639.
  • Saikia M, Krokowski D, Guan B-J, et al. Genome-wide Identification and Quantitative Analysis of Cleaved tRNA Fragments Induced by Cellular Stress. J Biol Chem. 2012;287:42708–42725.
  • Elkordy A, Mishima E, Niizuma K, et al. Stress‐induced tRNA cleavage and tiRNA generation in rat neuronal PC12 cells. J Neurochem. 2018;146:560–569.
  • Pereira M, Ribeiro DR, Pinheiro MM, et al. M5u54 tRNA Hypomodification by Lack of TRMT2A Drives the Generation of tRNA-Derived Small RNAs. Int J Mol Sci. 2021;22:2941.
  • Taketo K, Konno M, Asai A, et al. The epitranscriptome m6a writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol [Internet]. 2017 [cited 2022 Jun 23]; Available from: http://www.spandidos-publications.com/10.3892/ijo.2017.4219.
  • Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212.
  • Uddin MB, Roy KR, Hosain SB, et al. An N-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem Pharmacol. 2019;160:134–145.
  • Liu D, Xu Y. P53, oxidative stress, and aging. Antioxid Redox Signal. 2011;15:1669–1678.
  • Ke W, Zhang L, Zhao X, et al. P53 m6a modulation sensitizes hepatocellular carcinoma to apatinib through apoptosis. Apoptosis. 2022;27:426–440.
  • Y-N M, Hong Y-G, G-Y Y, et al. LncRNA LBX2-AS1 promotes colorectal cancer progression and 5-fluorouracil resistance. Cancer Cell Int. 2021;21:501.
  • Pan S, Deng Y, Fu J, et al. N6‑methyladenosine upregulates miR‑181d‑5p in exosomes derived from cancer‑associated fibroblasts to inhibit 5‑FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 2022;60:14.
  • Venugopal V, Sumi S. Molecular Biomarkers and Drug Targets in Brain Arteriovenous and Cavernous Malformations: where are We? Stroke. 2022;53:279–289.
  • Zhang Y, Zhang X, Li H, et al. Antidepressant-like effects of helicid on a chronic unpredictable mild stress-induced depression rat model: inhibiting the IKK/IκBα/NF-κB pathway through NCALD to reduce inflammation. Int Immunopharmacol. 2021;93:107165.
  • Zhang Y, Li C, Guan C, et al. MiR-181d-5p Targets KLF6 to Improve Ischemia/Reperfusion-Induced AKI Through Effects on Renal Function, Apoptosis, and Inflammation. Front physiol. 2020;11:510.
  • Abdellateif MS, Salem SE, Badr DM, et al. The Prognostic Significance of 5-Fluorouracil Induced Inflammation and Immuno-Modulation in Colorectal Cancer Patients. J Inflamm Res. 2020;13:1245–1259.
  • D-X H, X-T G, Y-R L, et al. Methylation-regulated miR-149 modulates chemoresistance by targeting GlcNac N -deacetylase/N -sulfotransferase-1 in human breast cancer. FEBS J. 2014;281:4718–4730.
  • Pecoraro M, Pala B, Di Marcantonio M, et al. Doxorubicin‑induced oxidative and nitrosative stress: mitochondrial connexin 43 is at the crossroads. Int J Mol Med. 2020;46:1197–1209.
  • Pilco-Ferreto N, Calaf GM. Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. Int J Oncol. 2016;49:753–762.
  • Li P, Shan J-X, Chen X-H, et al. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res. 2015;25:588–603.
  • Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: dNA Damage, Redox Signaling, or Both? Antioxid Redox Signal. 2020;33:839–859.
  • Pan X, Hong X, Li S, et al. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6a-dependent manner. Exp Mol Med. 2021;53:91–102.
  • Dang X, Zhang R, Peng Z, et al. HIPK2 overexpression relieves hypoxia/reoxygenation-induced apoptosis and oxidative damage of cardiomyocytes through enhancement of the Nrf2/ARE signaling pathway. Chem Biol Interact. 2020;316:108922.
  • Yu W, Chen Y, Dubrulle J, et al. Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci Rep. 2018;8:4306.
  • He P, Ge R, Mao W, et al. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN‑3 cells. Oncol Lett [Internet]. 2018 [cited 2022 Jun 23]; Available from: http://www.spandidos-publications.com/10.3892/ol.2018.9563.
  • Dhillon AS, Hagan S, Rath O, et al. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–3290.
  • Corre I, Paris F, Huot J. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells. Oncotarget. 2017;8:55684–55714.
  • Li Y, Li J, Luo M, et al. Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett. 2018;430:57–66.
  • Jin D, Guo J, Wu Y, et al. M6a mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol OncolJ Hematol Oncol. 2019;12:135.
  • Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer Cell. 2016;29:783–803.
  • Grattarola M, Cucci MA, Roetto A, et al. Post-translational down-regulation of Nrf2 and YAP proteins, by targeting deubiquitinases, reduces growth and chemoresistance in pancreatic cancer cells. Free Radic Biol Med. 2021;174:202–210.
  • Zhang Y, Kang M, Zhang B, et al. M6a modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer. 2019;18:185.
  • Teng B-W, Zhang K-D, Yang Y-H, et al. Genome-wide CRISPR-Cas9 screening identifies that hypoxia-inducible factor-1a-induced CBX8 transcription promotes pancreatic cancer progression via IRS1/AKT axis. World J Gastrointest Oncol. 2021;13:1709–1724.
  • Wei J, Yin Y, Zhou J, et al. METTL3 potentiates resistance to cisplatin through m 6 a modification of TFAP2C in seminoma. J Cell Mol Med. 2020;24:11366–11380.
  • Kulak MV, Cyr AR, Woodfield GW, et al. Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer. Oncogene. 2013;32:4043–4051.
  • Song Z, Jia G, Ma P, et al. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6a modification-mediated ferroptosis. Life Sci. 2021;276:119399.
  • Guo J, Xu B, Han Q, et al. Ferroptosis: a Novel Anti-tumor Action for Cisplatin. Cancer Res Treat. 2018;50:445–460.
  • Sun S, Gao T, Pang B, et al. RNA binding protein NKAP protects glioblastoma cells from ferroptosis by promoting SLC7A11 mRNA splicing in an m6a-dependent manner. Cell Death Dis. 2022;13:73.
  • Zhang C, Liu X, Jin S, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer. 2022;21:47.
  • Nie Q, Hu Y, Yu X, et al. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int. 2022;22:12.
  • Christman JK. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483–5495.
  • Cheng JX, Chen L, Li Y, et al. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun. 2018;9:1163.
  • Gkatza NA, Castro C, Harvey RF, et al. Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biol. 2019;17:e3000297.
  • Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, et al. Reduced levels of methyltransferase DNMT2 sensitize human fibroblasts to oxidative stress and DNA damage that is accompanied by changes in proliferation-related miRNA expression. Redox Biol. 2018;14:20–34.
  • Hou D, Liu Z, Xu X, et al. Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer. Redox Biol. 2018;17:99–111.
  • Fukumoto T, Zhu H, Nacarelli T, et al. N6-Methylation of Adenosine of FZD10 mRNA Contributes to PARP Inhibitor Resistance. Cancer Res. 2019;79:2812–2820.
  • Wang Z, Xia J, Li J, et al. Rg1 Protects Hematopoietic Stem Cells from LiCl-Induced Oxidative Stress via Wnt Signaling Pathway. Evid-Based Complement Altern Med ECAM. 2022;2022:2875583.
  • Majchrzak-Celińska A, Kleszcz R, Studzińska-Sroka E, et al. Lichen Secondary Metabolites Inhibit the Wnt/β-Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide. Cells. 2022;11:1084.
  • Cong K, Cantor SB. Exploiting replication gaps for cancer therapy. Mol Cell. 2022;82:2363–2369.
  • Balko JM, Potti A, Saunders C, et al. Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors. BMC Genomics. 2006;7:289.
  • Rodríguez-Hernández MA, de la Cruz-Ojeda P, Gallego P, et al. Dose-dependent regulation of mitochondrial function and cell death pathway by sorafenib in liver cancer cells. Biochem Pharmacol. 2020;176:113902.
  • Lin Z, Niu Y, Wan A, et al. RNA m 6 a methylation regulates sorafenib resistance in liver cancer through FOXO 3‐mediated autophagy. EMBO J. 2020;39 [[cited 2022 Jul 1]]. InternetAvailable from: https://onlinelibrary.wiley.com/doi/10.15252/embj.2019103181
  • Essers MAG, de Vries-Smits LMM, Barker N, et al. Functional Interaction Between ß-Catenin and FOXO in Oxidative Stress Signaling. Science. 2005;308:1181–1184.
  • Burgering BMT, Medema RH. Decisions on life and death: fOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukocyte Biol. 2003;73:689–701.
  • Di Emidio G, Falone S, Vitti M, et al. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod Oxf Eng. 2014;29:2006–2017.
  • Okon IS, Coughlan KA, Zhang M, et al. Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J Biol Chem. 2015;290:9101–9110.
  • Liu S, Li Q, Li G, et al. The mechanism of m6a methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene. Cell Death Dis. 2020;11:969.
  • Chen H, Jia B, Zhang Q, et al. Meclofenamic Acid Restores Gefinitib Sensitivity by Downregulating Breast Cancer Resistance Protein and Multidrug Resistance Protein 7 via FTO/m6A-Demethylation/c-Myc in Non-Small Cell Lung Cancer. Front Oncol. 2022;12:870636.
  • Marengo B, Garbarino O, Speciale A, et al. MYC Expression and Metabolic Redox Changes in Cancer Cells: a Synergy Able to Induce Chemoresistance. Oxid Med Cell Longev. 2019;2019:1–9.
  • Wang KC, Chang HY. Molecular Mechanisms of Long Noncoding RNAs. Mol Cell. 2011;43:904–914.
  • Yan X, Hu Z, Feng Y, et al. Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers. Cancer Cell. 2015;28:529–540.
  • Chen Y, Xiang D, Zhao X, et al. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m6a methylation promotes disease progression and sorafenib resistance. Hum Cell. 2021;34:1800–1811.
  • Singh AK, Kashyap MP, Tripathi VK, et al. Neuroprotection Through Rapamycin-Induced Activation of Autophagy and PI3K/Akt1/mTOR/CREB Signaling Against Amyloid-β-Induced Oxidative Stress, Synaptic/Neurotransmission Dysfunction, and Neurodegeneration in Adult Rats. Mol Neurobiol. 2017;54:5815–5828.
  • Chong ZZ, Shang YC, Hou J, et al. Wnt1 neuroprotection translates into improved neurological function during oxidant stress and cerebral ischemia through AKT1 and mitochondrial apoptotic pathways. Oxid Med Cell Longev. 2010;3:153–165.
  • Quirke VM. Tamoxifen from Failed Contraceptive Pill to Best-Selling Breast Cancer Medicine: a Case-Study in Pharmaceutical Innovation. Front Pharmacol. 2017;8:620.
  • Bekele RT, Venkatraman G, Liu R-Z, et al. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance. Sci Rep. 2016;6:21164.
  • Panayiotou C, Solaroli N, Karlsson A. The many isoforms of human adenylate kinases. Int J Biochem Cell Biol. 2014;49:75–83.
  • Jan Y-H, Lai T-C, Yang C-J, et al. Adenylate kinase 4 modulates oxidative stress and stabilizes HIF-1α to drive lung adenocarcinoma metastasis. J Hematol OncolJ Hematol Oncol. 2019;12:12.
  • Shan Y, Akram A, Amatullah H, et al. ATF3 protects pulmonary resident cells from acute and ventilator-induced lung injury by preventing Nrf2 degradation. Antioxid Redox Signal. 2015;22:651–668.
  • Liu X, Yuan J, Zhang X, et al. ATF3 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an N 6 -Methyladenosine-Based Epitranscriptomic Mechanism. Chem Res Toxicol. 2021;34:1814–1821.
  • Edagawa M, Kawauchi J, Hirata M, et al. Role of Activating Transcription Factor 3 (ATF3) in Endoplasmic Reticulum (ER) Stress-induced Sensitization of p53-deficient Human Colon Cancer Cells to Tumor Necrosis Factor (TNF)-related Apoptosis-inducing Ligand (TRAIL)-mediated Apoptosis through Up-regulation of Death Receptor 5 (DR5) by Zerumbone and Celecoxib. J Biol Chem. 2014;289:21544–21561.
  • Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9:2277–2293.
  • Higa A, Chevet E. Redox signaling loops in the unfolded protein response. Cell Signal. 2012;24:1548–1555.
  • Hourihan JM, Moronetti Mazzeo LE, Fernández-Cárdenas LP, et al. Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/nrf2 Antioxidant Response. Mol Cell. 2016;63:553–566.
  • Gordon RR, Nelson PS. Cellular senescence and cancer chemotherapy resistance. Drug Resist Updat. 2012;15:123–131.
  • Brunner TB. The rationale of combined radiotherapy and chemotherapy - Joint action of Castor and Pollux. Best Pract Res Clin Gastroenterol. 2016;30:515–528.
  • Navarro J, Obrador E, Pellicer JA, et al. Blood glutathione as an index of radiation-induced oxidative stress in mice and humans. Free Radic Biol Med. 1997;22:1203–1209.
  • Jia S, Dong S, Liu H, et al. Dopamine-derived nanoparticles for the protection of irradiation-induced intestinal injury by maintaining intestinal homeostasis. Biomater Sci. 2022;10:3309–3322.
  • Kowalski-Chauvel A, Lacore MG, Arnauduc F, et al. The m6a RNA Demethylase ALKBH5 Promotes Radioresistance and Invasion Capability of Glioma Stem Cells. Cancers (Basel). 2020;13:40.
  • Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–1134.
  • Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234:8381–8395.
  • Shibue T, Weinberg RE. Cscs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–629.
  • Talukdar S, Emdad L, Das SK, et al. Evolving Strategies for Therapeutically Targeting Cancer Stem Cells. Adv Cancer Res [Internet] Elsevier ; 2016 [cited 2022 Jul 6]. p. 159–191. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065230X16300343.
  • Jiang Q, Crews LA, Holm F, et al. RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nat Rev Cancer. 2017;17:381–392.
  • Lin S, Choe J, Du P, et al. The m(6)a Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell. 2016;62:335–345.
  • Gao Q, Zheng J, Ni Z, et al. The m6a Methylation-Regulated AFF4 Promotes Self-Renewal of Bladder Cancer Stem Cells. Stem Cells Int. 2020;2020:8849218.
  • Shriwas O, Priyadarshini M, Samal SK, et al. DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m6a-demethylation of FOXM1 and NANOG. Apoptosis Int J Program Cell Death. 2020;25:233–246.
  • Mohan A, R RR, Mohan G, et al. Reporters of Cancer Stem Cells as a Tool for Drug Discovery. Front Oncol. 2021;11:669250.
  • Tsao A-N, Chuang Y-S, Lin Y-C, et al. Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway. Oncol Rep. 2022;47:105.
  • Li L, Liu Y, Xiao L-M, et al. Induction of cancer cell stemness in glioma through glycolysis and the long noncoding RNA HULC-activated FOXM1/AGR2/HIF-1α axis. Lab Investig J Tech Methods Pathol. 2022;102:691–701.
  • Song I-S, Jeong YJ, Jeong SH, et al. FOXM1-Induced PRX3 Regulates Stemness and Survival of Colon Cancer Cells via Maintenance of Mitochondrial Function. Gastroenterology. 2015;149:1006–1016.e9.
  • Yang Y, Wu J, Liu F, et al. IGF2BP1 Promotes the Liver Cancer Stem Cell Phenotype by Regulating MGAT5 mRNA Stability by m6a RNA Methylation. Stem Cells Dev. 2021. scd.2021.0153. 10.1089/scd.2021.0153
  • Wang Y, Wang J, Li X, et al. N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun. 2021;12:6314.
  • Sari IN, Phi LTH, Jun N, et al. Hedgehog Signaling in Cancer: a Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells. 2018;7:E208.
  • Liu X, Wang Z, Yang Q, et al. RNA Demethylase ALKBH5 Prevents Lung Cancer Progression by Regulating EMT and Stemness via Regulating p53. Front Oncol. 2022;12:858694.
  • Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:250.
  • Chow MT, Möller A, Smyth MJ. Inflammation and immune surveillance in cancer. Semin Cancer Biol. 2012;22:23–32.
  • Halliday GM, Patel A, Hunt MJ, et al. Spontaneous regression of human melanoma/nonmelanoma skin cancer: association with infiltrating CD4+ T cells. World J Surg. 1995;19:352–358.
  • Li N, Kang Y, Wang L, et al. ALKBH5 regulates anti–pd-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci. 2020;117:20159–20170.
  • Zhang F, Huang H, Qin Y, et al. MTDH associates with m6a RNA methylation and predicts cancer response for immune checkpoint treatment. iScience. 2021;24:103102.
  • Emdad L, Das SK, Hu B, et al. AEG-1/MTDH/LYRIC: a Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res. 2016;131:97–132.
  • Yu C, Liu Y, Tan H, et al. Metadherin regulates metastasis of squamous cell carcinoma of the head and neck via AKT signalling pathway-mediated epithelial–mesenchymal transition. Cancer Lett. 2014;343:258–267.
  • Yin H, Zhang X, Yang P, et al. RNA m6a methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394.
  • Hayakawa T, Sugiyama J, Yaguchi T, et al. Enhanced anti-tumor effects of the PD-1/PD-L1 blockade by combining a highly absorptive form of NF-kB/STAT3 inhibitor curcumin. J Immunother Cancer. 2014;2:P210. 2051-1426-2-S3-P210.
  • Liu Z, Wang T, She Y, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105.
  • Aventaggiato M, Vernucci E, Barreca F, et al. Sirtuins’ control of autophagy and mitophagy in cancer. Pharmacol Ther. 2021;221:107748.
  • Lu Z, Liu H, Song N, et al. METTL14 aggravates podocyte injury and glomerulopathy progression through N6-methyladenosine-dependent downregulating of Sirt1. Cell Death Dis. 2021;12:881.
  • Wang Z, Chen W. Emerging Roles of SIRT1 in Cancer Drug Resistance. Genes Cancer. 2013;4:82–90.
  • Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001;107:137–148.
  • Dai JM, Wang ZY, Sun DC, et al. SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol. 2007;210:161–166.
  • O’Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 2008;4:e1000155.
  • Zhang J, Ren D, Fedorova J, et al. SIRT1/SIRT3 Modulates Redox Homeostasis during Ischemia/Reperfusion in the Aging Heart. Antioxid Basel Switz. 2020;9:E858.
  • Falone S, Santini S, di Loreto S, et al. Improved mitochondrial and methylglyoxal-related metabolisms support hyperproliferation induced by 50 Hz magnetic field in neuroblastoma cells. J Cell Physiol. 2016;231:2014–2025.
  • Thornalley PJ. Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem Soc Trans. 2003;31:1372–1377.
  • Rabbani N, Xue M, Weickert MO, et al. Multiple roles of glyoxalase 1-mediated suppression of methylglyoxal glycation in cancer biology—involvement in tumour suppression, tumour growth, multidrug resistance and target for chemotherapy. Semin Cancer Biol. 2018;49:83–93.
  • Honek JF. Glyoxalase biochemistry. Biomol Concepts. 2015;6:401–414.
  • Sakamoto H, Mashima T, Kizaki A, et al. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood. 2000;95:3214–3218.
  • Antognelli C, Palumbo I, Aristei C, et al. Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB. Br J Cancer. 2014;111:395–406.
  • Michel M, Hollenbach M, Pohl S, et al. Inhibition of Glyoxalase-I Leads to Reduced Proliferation, Migration and Colony Formation, and Enhanced Susceptibility to Sorafenib in Hepatocellular Carcinoma. Front Oncol. 2019;9:785.
  • Kulkarni CA, Nadtochiy SM, Kennedy L, et al. ALKBH7 mediates necrosis via rewiring of glyoxal metabolism. Elife. 2020;9:e58573.
  • Marchand V, Pichot F, Thüring K, et al. Next‐generation Sequencing‐Based RiboMethseq Protocol for Analysis of tRNA 2′‐o‐methylation. Biomolecules. 2017;7:13.
  • Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods. 2016;14:23–31.
  • Kong Y, Hu H, Shan Y, et al. Accurate quantification of 3′-terminal 2′-O-methylated small RNAs by utilizing oxidative deep sequencing and stem-loop RT-qPCR. Front Med. 2022;16:240–250.
  • Cui J, Liu Q, Sendinc E, et al. Nucleotide resolution profiling of m3c RNA modification by HAC-seq. Nucleic Acids Res. 2021;49: e27–e27.
  • Amalric A, Bastide A, Attina A, et al. Quantifying RNA modifications by mass spectrometry: a novel source of biomarkers in oncology. Crit Rev Clin Lab Sci. 2022;59:1–18.
  • Cui X, Zhou Y, Zheng Y, et al. Investigation of the enhanced photoactivity of CdS/Bi2MoO6/MoSe2 and its application in antibody-free enzyme-assisted photoelectrochemical strategy for detection of N6-methyladenosine and FTO protein. Mater Today Nano. 2022;20:100269.
  • Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.
  • Thomas A, Barriere S, Broseus L, et al. GECKO is a genetic algorithm to classify and explore high throughput sequencing data. Commun Biol. 2019;2:222.
  • Sui Q, Chen Z, Hu Z, et al. Cisplatin resistance-related multi-omics differences and the establishment of machine learning models. J Transl Med. 2022;20:171.
  • Nahar S, Kotikam V, Kumar VA, et al. Inhibition of miR-21 by 3′/5′-Serinyl-Capped 2′- O -Methyl RNA Interspersed with 2′- O -(2-Amino-3-Methoxypropyl) Uridine Units. Nucleic Acid Ther. 2016;26:327–334.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.