1,529
Views
1
CrossRef citations to date
0
Altmetric
Review

Advancements in understanding the role of microRnas in regulating macrophage polarization during acute lung injury

, , , , , , , , & show all
Pages 1694-1712 | Received 15 Feb 2023, Accepted 04 Jun 2023, Published online: 06 Jul 2023

References

  • Zhu WD, Xu J, Zhang M, et al. MicroRNA‑21 inhibits lipopolysaccharide‑induced acute lung injury by targeting nuclear factor‑κB. Exp Ther Med. 2018;16(6):4616–4622. doi: 10.3892/etm.2018.6789
  • Suo T, Chen G, Huang Y, et al. MiRNA-1246 suppresses acute lung injury-induced inflammation and apoptosis via the NF-κB and Wnt/β-catenin signal pathways. Biomed Pharmacother. 2018;108:783–791. doi: 10.1016/j.biopha.2018.09.046
  • Fu L, Zhu P, Qi S, et al. MicroRNA-92a antagonism attenuates lipopolysaccharide (LPS)-induced pulmonary inflammation and injury in mice through suppressing the PTEN/AKT/NF-κB signaling pathway. Biomed Pharmacother. 2018;107:703–711. doi: 10.1016/j.biopha.2018.08.040
  • Vaporidi K, Vergadi E, Kaniaris E, et al. Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;303(3):L199–207. doi: 10.1152/ajplung.00370.2011
  • Zhao J, Li X, Zou M, et al. MiR-135a inhibition protects A549 cells from LPS-induced apoptosis by targeting Bcl-2. Biochem Biophys Res Commun. 2014;452(4):951–957. doi: 10.1016/j.bbrc.2014.09.025
  • Xiao B, Liu Z, Li B, et al. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis. 2009;200(6):916–925. doi: 10.1086/605443
  • Fang Y, Gao F, Hao J, et al. MicroRNA-1246 mediates lipopolysaccharide-induced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin-converting enzyme 2. Am J Transl Res. 2017;9(3):1287–1296.
  • McCoy CE. The role of miRnas in cytokine signaling. Front Biosci. 2011;16(1):2161–2171. doi: 10.2741/3845. Landmark Ed.
  • Lu TX, Rothenberg ME. MicroRNA. MicroRna J Allergy Clin Immunol. 2018;141(4):1202–1207. doi: 10.1016/j.jaci.2017.08.034
  • Kushimoto S, Taira Y, Kitazawa Y, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome. Crit Care. 2012;16(6):R232. doi: 10.1186/cc11898
  • Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. J Immunol. 2015;194(3):855–860. doi: 10.4049/jimmunol.1402513
  • Qin S, Wang H, Liu G, et al. miR‑21‑5p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats. Mol Med Rep. 2019;20(6):4953–4962. doi: 10.3892/mmr.2019.10779
  • Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol. 2020;11:1722. doi: 10.3389/fimmu.2020.01722
  • Huang X, Xiu H, Zhang S, et al. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators Inflamm. 2018;2018:1–8. doi: 10.1155/2018/1264913
  • Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014;41(1):21–35. doi: 10.1016/j.immuni.2014.06.013
  • Cheng P, Li S, Chen H. Macrophages in lung injury, repair, and fibrosis. Cells. 2021;10(2):436. doi: 10.3390/cells10020436
  • Hao NB, Lu MH, Fan YH, et al. Macrophages in tumor microenvironments and the progression of tumors.Clin Dev Immunol 2012;2012:1–11. doi:10.1155/2012/948098
  • Mantovani A, Biswas S, Galdiero M, et al. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229(2):176–185. doi: 10.1002/path.4133
  • Artyomov MN, Sergushichev A, Schilling JD. Integrating immunometabolism and macrophage diversity. Semin Immunol. 2016;28(5):417–424. doi: 10.1016/j.smim.2016.10.004
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820. doi: 10.1016/j.cell.2010.01.022
  • Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–107. doi: 10.1038/nature08780
  • Ray NB, Durairaj L, Chen B, et al. Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med. 2010;16(10):1120–1127. doi: 10.1038/nm.2213
  • Simmons JD, Lee YL, Mulekar S, et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg. 2013;258(4):591–596. discussion 596-8. doi: 10.1097/SLA.0b013e3182a4ea46
  • Douda DN, Jackson R, Grasemann H, et al. Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. J Immunol. 2011;187(4):1856–1865. doi: 10.4049/jimmunol.1004201
  • Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140(4):345–350. doi: 10.5858/arpa.2015-0519-RA
  • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. doi: 10.1016/j.cell.2010.03.015
  • Sobierajska K, Ciszewski WM, Sacewicz-Hofman I, et al. Endothelial cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1234:71–86. doi: 10.1007/978-3-030-37184-5_6
  • Pérez L, Muñoz-Durango N, Riedel CA, et al. Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev. 2017;33:41–54. doi: 10.1016/j.cytogfr.2016.09.002
  • Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83. doi: 10.1016/j.cbi.2018.07.008
  • Isaka Y. Targeting TGF-β signaling in kidney fibrosis. Int J Mol Sci. 2018;19(9):2532. doi: 10.3390/ijms19092532
  • Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis. 2015;35(1):003–011. doi: 10.1055/s-0034-1397344
  • Ludwig N, Leidinger P, Becker K, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8):3865–3877. doi: 10.1093/nar/gkw116
  • Cai ZG, Zhang SM, Zhang Y, et al. MicroRNAs are dynamically regulated and play an important role in LPS-induced lung injury. Can J Physiol Pharmacol. 2012;90(1):37–43. doi: 10.1139/y11-095
  • Meng F, Henson R, Wehbe–Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–658. doi: 10.1053/j.gastro.2007.05.022
  • Pu QF, Liu GY, Wang HL, et al. MicroRNAs progress in the relationship with acute respiratory distress syndrome. Journal Of Zunyi Medical College. 2016;39(5):535–538+546. doi: 10.14169/j.cnki.zunyixuebao.2016.0124
  • Cao YM, Li YC. MicroRNA—— Novel regulatory molecules of acute lung injury. Journal Of Shanghai Jiao Tong University. 2014;34(10): 1539–1542. Medical edition.
  • Goodwin AJ, Guo C, Cook JA, et al. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Crit Care. 2015;19(1):440. doi: 10.1186/s13054-015-1162-8
  • Liu Y, Wang X, Li P, et al. Targeting MALAT1 and miRNA-181a-5p for the intervention of acute lung injury/acute respiratory distress syndrome. Respir Res. 2021;22(1):1. doi: 10.1186/s12931-020-01578-8
  • Wang W, Lou C, Gao J, et al. LncRNA SNHG16 reverses the effects of miR-15a/16 on LPS-induced inflammatory pathway. Biomed Pharmacother. 2018;106:1661–1667. doi: 10.1016/j.biopha.2018.07.105
  • Alkan AH, Akgül B. Endogenous miRNA sponges. Methods Mol Biol. 2022;2257:91–104.
  • He N, Tan H, Deng X, et al. MiR-223-3p-loaded exosomes from bronchoalveolar lavage fluid promote alveolar macrophage autophagy and reduce acute lung injury by inhibiting the expression of STK39. Hum Cell. 2022;35(6):1736–1751. doi: 10.1007/s13577-022-00762-w
  • Feng Z, Qi S, Zhang Y, et al. Ly6g+ neutrophil-derived miR-223 inhibits the NLRP3 inflammasome in mitochondrial DAMP-induced acute lung injury. Cell Death Dis. 2017;8(11):e3170. doi: 10.1038/cddis.2017.549
  • Huang C, Liu XJ, Zhou Q, et al. MiR-146a modulates macrophage polarization by inhibiting notch1 pathway in RAW264.7 macrophages. Int Immunopharmacol. 2016;32:46–54. doi: 10.1016/j.intimp.2016.01.009
  • Zeng Z, Gong H, Li Y, et al. Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Exp Lung Res. 2013;39(7):275–282. doi: 10.3109/01902148.2013.808285
  • Vergadi E, Vaporidi K, Theodorakis EE, et al. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J Immunol. 2014;192(1):394–406. doi: 10.4049/jimmunol.1300959
  • Li Y, Jiang QD, Mei ST, et al. Effects and action mechanism of miR-181a targeting SIRT 1 on sepsis-induced acute lung injury in mice. Journal Of Xi’an Jiaotong University. 2020;41(4):516–524. Medical Edition.
  • Worm J, Stenvang J, Petri A, et al. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res. 2009;37(17):5784–5792. doi: 10.1093/nar/gkp577
  • Zhang Y. Role of microRNA-155 in smoke inhalation-induced acute lung injury. Zhejiang University of Technology; 2020. doi: 10.27463/d.cnki.gzgyu.2020.001429
  • Guo Z, Wen Z, Qin A, et al. Antisense oligonucleotide treatment enhances the recovery of acute lung injury through IL-10-secreting M2-like macrophage-induced expansion of CD4+ regulatory T cells. J Immunol. 2013;190(8):4337–4348. doi: 10.4049/jimmunol.1203233
  • Yan X, Li W, Yang L, et al. MiR-135a protects vascular endothelial cells against ventilator-induced lung injury by inhibiting PHLPP2 to activate PI3K/Akt pathway. Cell Physiol Biochem. 2018;48(3):1245–1258. doi: 10.1159/000492010
  • Wu M, Sun L, Zhu J, et al. MicroRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Exp Ther Med. 2015;9(4):1125–1132. doi: 10.3892/etm.2015.2224
  • Ning SL, Zhu H, Shao J, et al. MiR-21 inhibitor improves locomotor function recovery by inhibiting IL-6R/JAK-STAT pathway-mediated inflammation after spinal cord injury in model of rat. Eur Rev Med Pharmacol Sci. 2019;23(2):433–440. doi: 10.26355/eurrev_201901_16852
  • Wang Z, Brandt S, Medeiros A, et al. MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS One. 2015;10(2):e0115855. doi: 10.1371/journal.pone.0115855
  • Wang X, Wang X, Liu X, et al. MiR-15a/16 are upregulated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway. Int J Clin Exp Med. 2015;8(4):5683–5690.
  • Tian J, Cui X, Sun J, et al. Exosomal microRNA-16-5p from adipose mesenchymal stem cells promotes TLR4-mediated M2 macrophage polarization in septic lung injury. Int Immunopharmacol. 2021;98:107835. doi:10.1016/j.intimp.2021.107835
  • Zhao D, Wang C, Liu X, et al. CircN4bp1 facilitates sepsis-induced acute respiratory distress syndrome through mediating macrophage polarization via the miR-138-5p/EZH2 axis. Mediators Inflamm. 2021;2021:1–14. doi:10.1155/2021/7858746
  • Ju M, Liu B, He H, et al. MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting in?ammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell Cycle. 2018;17(16):2001–2018. doi: 10.1080/15384101.2018.1509635
  • Wang J, Huang R, Xu Q, et al. Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p. Crit Care Med. 2020;48(7):e599–e610. doi: 10.1097/CCM.0000000000004315
  • Li H, Hu W, Lin Y, et al. MicroRNA-9-5p is involved in lipopolysaccharide-induced acute lung injury via the regulation of macrophage polarization. Int J Toxicol. 2023;42(2):156–164. doi: 10.1177/10915818221146446
  • Jiao Y, Zhang T, Zhang C, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25(1):356. doi: 10.1186/s13054-021-03775-3
  • Li W, Hou G, Lv J, et al. MicroRNA-30d-5p ameliorates lipopolysaccharide-induced acute lung injury via activating AMPKα. Immunopharmacol Immunotoxicol. 2021;43(4):431–442. doi: 10.1080/08923973.2021.1933517
  • Sun Q, Xia Y, Qin H, et al. MEF2 intervened LPS-induced acute lung injury by binding to KLF2 promoter and modulating macrophage phenotype. Int Immunopharmacol. 2022;108:108873. doi:10.1016/j.intimp.2022.108873
  • Khan MJ, Singh P, Dohare R, et al. Inhibition of miRNA-34a promotes M2 macrophage polarization and improves LPS-Induced lung injury by targeting Klf4. Genes (Basel). 2020;11(9):966. doi: 10.3390/genes11090966
  • Liu J, Xing F, Fu Q, et al. Huc-MSCs exosomal miR-451 alleviated acute lung injury by modulating macrophage M2 polarization via regulating MIF-PI3K-AKT signaling pathway. Environ Toxicol. 2022;37(12):2819–2831. doi: 10.1002/tox.23639
  • Xiao J, Tang J, Chen Q, et al. MiR-429 regulates alveolar macrophage inflammatory cytokine production and is involved in LPS-induced acute lung injury. Biochem J. 2015;471(2):281–291. doi: 10.1042/BJ20131510
  • Ying H, Kang Y, Zhang H, et al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J Immunol. 2015;194(3):1239–1251. doi: 10.4049/jimmunol.1402088
  • Ward JR, Heath PR, Catto JW, et al. Regulation of neutrophil senescence by microRnas. PLoS One. 2011;6(1):e15810. doi: 10.1371/journal.pone.0015810
  • Wang X, He Y, Mackowiak B, et al. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut. 2021;70(4):784–795. doi: 10.1136/gutjnl-2020-322526
  • Yuan X, Berg N, Lee JW, et al. MicroRNA miR-223 as regulator of innate immunity. J Leukocyte Biol. 2018;104(3):515–524. doi: 10.1002/JLB.3MR0218-079R
  • Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451(7182):1125–1129. doi: 10.1038/nature06607
  • He Y, Rodrigues RM, Wang X, et al. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. J Clin Invest. 2021;131(3). doi: 10.1172/JCI141513
  • Fan HB, Liu YJ, Wang L, et al. MiR-142-3p acts as an essential modulator of neutrophil development in zebrafish. Blood. 2014;124(8):1320–1330. doi: 10.1182/blood-2013-12-545012
  • Zhang D, Lee H, Wang X, et al. A potential role of microvesicle-containing miR-223/142 in lung inflammation. Thorax. 2019;74(9):865–874. doi: 10.1136/thoraxjnl-2018-212994
  • Roos J, Enlund E, Funcke JB, et al. MiR-146a-mediated suppression of the inflammatory response in human adipocytes. Sci Rep. 2016;6(1):38339. doi: 10.1038/srep38339
  • Brudecki L, Ferguson DA, McCall CE, et al. MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes. Immunol Cell Biol. 2013;91(8):532–540. doi: 10.1038/icb.2013.37
  • Meng JB, Sun LP, Wa YL, et al. Mechanism of action of miRNA-146a in acute lung injury induced by sepsis. The PLA Medical Journal. 2017;42(3):207–210.
  • Zeng ZG. Role and mechanism of miR-146a in lipopolysaccharide-induced acute lung injury in rats. Nanchang University; 2012. doi: 10.7666/d.Y2427628
  • Funahashi Y, Kato N, Masuda T, et al. MiR-146a targeted to splenic macrophages prevents sepsis-induced multiple organ injury. Lab Invest. 2019;99(8):1130–1142. doi: 10.1038/s41374-019-0190-4
  • Juriaiti Y, Abudureheman Y, Yang YD, et al. Expression of miR-146a in sepsis-associated acute lung injury and its early diagnostic value. Practical Shock Journal (Chinese And English). 2020;4(4):215–218.
  • Wang JF, Yu ML, Yu G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun. 2010;394(1):184–188. doi: 10.1016/j.bbrc.2010.02.145
  • Wu Y, Li C, He Y, et al. [Relationship between expression of microRNA and inflammatory cytokines plasma level in pediatric patients with sepsis]. Zhonghua Er Ke Za Zhi. 2014;52(1):28–33.
  • Aziz F. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell Immunol. 2016;303:1–6. doi: 10.1016/j.cellimm.2016.04.003
  • Zhu J, Wang FL, Wang HB, et al. TNF-α mRNA is negatively regulated by microRNA-181a-5p in maturation of dendritic cells induced by high mobility group box-1 protein. Sci Rep. 2017;7(1):12239. doi: 10.1038/s41598-017-12492-3
  • Li W, Qiu X, Jiang H, et al. Downregulation of miR-181a protects mice from LPS-induced acute lung injury by targeting Bcl-2. Biomed Pharmacother. 2016;84:1375–1382. doi: 10.1016/j.biopha.2016.10.065
  • Jiang K, Guo S, Zhang T, et al. Downregulation of TLR4 by miR-181a provides negative feedback regulation to lipopolysaccharide-induced inflammation. Front Pharmacol. 2018;9:142. doi: 10.3389/fphar.2018.00142
  • Zhao H, Guo Y, Sun Y, et al. MiR-181a/b-5p ameliorates inflammatory response in monocrotaline-induced pulmonary arterial hypertension by targeting endocan. J Cell Physiol. 2020;235(5):4422–4433. doi: 10.1002/jcp.29318
  • Wang ZH, Liang YB, Tang H, et al. Dexamethasone down-regulates the expression of microRNA-155 in the livers of septic mice. PLoS One. 2013;8(11):e80547. doi: 10.1371/journal.pone.0080547
  • Nie C. Experimental study that upregulation of autophagy induced by miR-155 protects the lung of septic rat. Nanchang University; 2014. doi: 10.3969/j.issn.2095-4344.1438
  • Li HZ, Yang K, Liu YW, et al. Effect of miR-155 on acute lung injury in burned rats: changes of nuclear factor-kappa B pathway. Chin J Tissue Eng Res. 2020;24(2):204–208.
  • Wang Y. Protective effect of miR-155 on acute lung injury induced by sepsis and its mechanism in mice. Nanchang University; 2016. doi: 10.7666/d.D01016628
  • Pfeiffer D, Roßmanith E, Lang I, et al. MiR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an in vitro sepsis model. PLoS One. 2017;12(6):e0179850. doi: 10.1371/journal.pone.0179850
  • Jiang K, Yang J, Guo S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation. Mol Ther. 2019;27(10):1758–1771. doi: 10.1016/j.ymthe.2019.07.003
  • Rajasekaran S, Pattarayan D, Rajaguru P, et al. MicroRNA regulation of acute lung injury and acute respiratory distress syndrome. J Cell Physiol. 2016;231(10):2097–2106. doi: 10.1002/jcp.25316
  • Cao YY, Wang Z, Wang ZH, et al. Inhibition of miR-155 alleviates sepsis-induced inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling. Int Immunopharmacol. 2021;90:107218. doi: 10.1016/j.intimp.2020.107218
  • Lv X, Zhang Y, Cui Y, et al. Inhibition of microRNA‑155 relieves sepsis‑induced liver injury through inactivating the JAK/STAT pathway. Mol Med Rep. 2015;12(4):6013–6018. doi: 10.3892/mmr.2015.4188
  • Ma F, Liu F, Ding L, et al. Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol. 2017;55(1):1263–1273. doi: 10.1080/13880209.2017.1297838
  • Wang P, Hou J, Lin L, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185(10):6226–6233. doi: 10.4049/jimmunol.1000491
  • Hao JX, Xu JX, Liang Y, et al. Expression of miR-127 and miR-155 in patients with acute lung injury and its effect on prognosis. Clinical Emergency Journal. 2020;21(8):654–658.
  • Yang J, Mao M, Zhen YY. MiRNA-23a has effects to improve lung injury induced by sepsis in vitro and vivo study. Biomed Pharmacother. 2018;107:81–89. doi: 10.1016/j.biopha.2018.07.097
  • Jiang T, Sun L, Zhu J, et al. MicroRNA-23a-3p promotes macrophage M1 polarization and aggravates lipopolysaccharide-induced acute lung injury by regulating PLK1/STAT1/STAT3 signalling. Int J Exp Pathol. 2022;103(5):198–207. doi: 10.1111/iep.12445
  • Dai CT, Zhang SF, Huang YJ, et al. Down-regulation of miR-23b-3p protects vascular endothelial cell from injury induced by Streptococcus pneumoniae through targeting PALM3. Chinese Journal Of Laboratory Diagnosis. 2020;24(6):996–1002.
  • Zhang H, Caudle Y, Shaikh A, et al. Inhibition of microRNA-23b prevents polymicrobial sepsis-induced cardiac dysfunction by modulating TGIF1 and PTEN. Biomed Pharmacother. 2018;103:869–878. doi: 10.1016/j.biopha.2018.04.092
  • Wang G, Zhang J, Dui D, et al. High mobility group box 1 induces the activation of the Janus kinase 2 and signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in pancreatic acinar cells in rats, while AG490 and rapamycin inhibit their activation. Bosn J Of Basic Med Sci. 2016;16(4):307–312. doi: 10.17305/bjbms.2016.1442
  • Liu H, Yao YM, Yu Y, et al. Role of Janus kinase/signal transducer and activator of transcription pathway in regulation of expression and inflammation-promoting activity of high mobility group box protein 1 in rat peritoneal macrophages. Shock. 2007;27(1):55–60. doi: 10.1097/01.shk.0000233197.40989.31
  • Peña G, Cai B, Deitch EA, et al. JAK2 inhibition prevents innate immune responses and rescues animals from sepsis. J Mol Med (Berl). 2010;88(8):851–859. doi: 10.1007/s00109-010-0628-z
  • Ge C, Liu JX, Fu Y, et al. Protective effect of microRNA-21 on acute lung injury mice induced by sepsis and its relationship with PETN. Shandong Med J. 2022;62(2):30–34.
  • Qi W, Li H, Cai XH, et al. Lipoxin A4 activates alveolar epithelial sodium channel gamma via the microRNA-21/PTEN/AKT pathway in lipopolysaccharide-induced inflammatory lung injury. Lab Invest. 2015;95(11):1258–1268. doi: 10.1038/labinvest.2015.109
  • Bao P, Zhao W, Mou M, et al. MicroRNA-21 mediates bone marrow mesenchymal stem cells protection of radiation-induced lung injury during the acute phase by regulating polarization of alveolar macrophages. Transl Cancer Res. 2020;9(1):231–239. doi: 10.21037/tcr.2019.12.77
  • Wang H, Zhang P, Chen W, et al. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin Chem Lab Med. 2012;50(8):1423–1428. doi: 10.1515/cclm-2011-0826
  • Cai ZG, Zhang SM, Zhang H, et al. Expression and function of miR-16 in lipopolysaccharide-induced acute lung injury. Journal Of Nanchang University(medical Sciences). 2011;51(2):1–5.
  • Moon HG, Yang J, Zheng Y, et al. MiR-15a/16 regulates macrophage phagocytosis after bacterial infection. J Immunol. 2014;193(9):4558–4567. doi: 10.4049/jimmunol.1401372
  • Rasoolnezhad M, Safaralizadeh R, Hosseinpourfeizi MA, et al. MiRNA-138-5p: a strong tumor suppressor targeting PD-L-1 inhibits proliferation and motility of breast cancer cells and induces apoptosis. Eur J Pharmacol. 2021;896:173933. doi: 10.1016/j.ejphar.2021.173933
  • Zhao L, Yu H, Yi S, et al. The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget. 2016;7(29):45370–45384. doi: 10.18632/oncotarget.9659
  • Feng X, Hu J, Zhan F, et al. MicroRNA-138-5p regulates hippocampal neuroinflammation and cognitive impairment by NLRP3/Caspase-1 signaling pathway in rats. J Inflamm Res. 2021;14:1125–1143. doi: 10.2147/JIR.S304461
  • Ou Y, An R, Wang H, et al. Oxidative stress-related circulating miRNA-27a is a potential biomarker for diagnosis and prognosis in patients with sepsis. BMC Immunol. 2022;23(1):14. doi: 10.1186/s12865-022-00489-1
  • Lu Y, Zheng W, Rao X, et al. MicroRNA-9-5p facilitates lung adenocarcinoma cell malignant progression via targeting STARD13. Biochem Genet. 2022;60(6):1865–1880. doi: 10.1007/s10528-022-10191-x
  • Kranjc T, Milojević M, Kocjan T, et al. Plasma levels of miR-30d-5p are decreased in regularly exercising postmenopausal women. Menopause. 2020;27(3):319–325. doi: 10.1097/GME.0000000000001454
  • Zhu Y, Liu J, Fan L, et al. Serum expression and significance of MicroRNA-30d-5p in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2017;10(8):8677–8685.
  • Lai L, Azzam KM, Lin WC, et al. MicroRNA-33 regulates the innate immune response via ATP binding cassette transporter-mediated remodeling of membrane microdomains. J Biol Chem. 2016;291(37):19651–19660. doi: 10.1074/jbc.M116.723056
  • Näär AM. MiR-33: a metabolic conundrum. Trends Endocrinol Metab. 2018;29(10):667–668. doi: 10.1016/j.tem.2018.04.004
  • Xie Q, Wei M, Zhang B, et al. MicroRNA‑33 regulates the NLRP3 inflammasome signaling pathway in macrophages. Mol Med Rep. 2018;17(2):3318–3327. doi: 10.3892/mmr.2017.8224
  • Liu M, Wang J, Chen S, et al. Exploring the effect of Er miao San-containing serum on macrophage polarization through miR-33/NLRP3 pathway. J Ethnopharmacol. 2023;307:116178. doi:10.1016/j.jep.2023.116178
  • Liu M, Meng X, Xuan Z, et al. Effect of Er Miao San on peritoneal macrophage polarisation through the miRNA-33/NLRP3 signalling pathway in a rat model of adjuvant arthritis. Pharm Biol. 2022;60(1):846–853. doi: 10.1080/13880209.2022.2066700
  • Zhou J, Lian H, Xu G, et al. MicroRNA-451 increases vascular permeability and suppresses angiogenesis in pulmonary burn injury in a rat model. Adv Clin Exp Med. 2020;29(11):1241–1248. doi: 10.17219/acem/126299
  • Liu JS, Du J, Cheng X, et al. Exosomal miR-451 from human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury. J Chin Med Assoc. 2019;82(12):895–901. doi: 10.1097/JCMA.0000000000000189
  • Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem. 2015;15(6):467–474. doi: 10.2174/1389557515666150324123208
  • Kluiver J, Gibcus JH, Hettinga C, et al. Rapid generation of microRNA sponges for microRNA inhibition. PLoS One. 2012;7(1):e29275. doi: 10.1371/journal.pone.0029275
  • Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release. 2019;313:80–95. doi:10.1016/j.jconrel.2019.10.007
  • Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172(3):962–974. doi: 10.1016/j.jconrel.2013.09.015
  • Misiak P, Markiewicz KH, Szymczuk D, et al. Polymeric drug delivery systems bearing cholesterol moieties: a review. Polymers. 2020;12(11):2620. doi: 10.3390/polym12112620
  • Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265–280. doi: 10.1038/s41576-021-00439-4
  • Lewis SR, Pritchard MW, Thomas CM, et al. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev. 2019;7(7):Cd004477. doi: 10.1002/14651858.CD004477.pub3
  • Nanchal RS, Truwit JD. Recent advances in understanding and treating acute respiratory distress syndrome. F1000Res. 2018;7. doi: 10.12688/f1000research.15493.1
  • Klingemann H, Matzilevich D, Marchand J. Mesenchymal stem cells – sources and clinical applications. Transfus Med Hemother. 2008;35(4):2–2. doi: 10.1159/000142333
  • Hennrick KT, Keeton AG, Nanua S, et al. Lung cells from neonates show a mesenchymal stem cell phenotype. Am J Respir Crit Care Med. 2007;175(11):1158–1164. doi: 10.1164/rccm.200607-941OC
  • Lee JH, Tammela T, Hofree M, et al. Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6. Cell. 2017;170(6):1149–1163.e12. doi: 10.1016/j.cell.2017.07.028
  • Laffey JG, Matthay MA. Fifty years of research in ards. cell-based therapy for acute respiratory distress Syndrome.Biology and potential therapeutic value. Am J Respir Crit Care Med. 2017;196(3):266–273. doi: 10.1164/rccm.201701-0107CP
  • Shi L, Wang L, Xu R, et al. Mesenchymal stem cell therapy for severe COVID-19. Signal Transduct Target Ther. 2021;6(1):339. doi: 10.1038/s41392-021-00754-6
  • Deng H, Wu L, Liu M, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate LPS-Induced ARDS by modulating macrophage polarization through inhibiting glycolysis in macrophages. Shock. 2020;54(6):828–843. doi: 10.1097/SHK.0000000000001549
  • Dos Santos CC, Amatullah H, Vaswani CM, et al. Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. Eur Respir J. 2022;59(1):2004216. doi: 10.1183/13993003.04216-2020