611
Views
0
CrossRef citations to date
0
Altmetric
Review

Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy

, , , , , , , & show all
Pages 2467-2484 | Received 01 Jun 2023, Accepted 09 Oct 2023, Published online: 05 Jan 2024

References

  • Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006 Aug;7(8):589–600. doi: 10.1038/nrm1983
  • Artham SM, Lavie CJ, Milani RV. et al. Clinical impact of left ventricular hypertrophy and implications for regression. Prog Cardiovasc Dis. 2009 Sep-Oct;52(2):153–167.
  • Kavey RE. Left ventricular hypertrophy in hypertensive children and adolescents: predictors and prevalence. Curr Hypertens Rep. 2013 Oct;15(5):453–457. doi: 10.1007/s11906-013-0370-3
  • Sabbah HN. Silent disease progression in clinically stable heart failure. Eur J Heart Fail. 2017 Apr;19(4):469–478. doi: 10.1002/ejhf.705
  • Michels M, Olivotto I, Asselbergs FW, et al. Life-long tailoring of management for patients with hypertrophic cardiomyopathy: awareness and decision-making in changing scenarios. Neth Heart J. 2017 Mar;25(3):186–199. doi: 10.1007/s12471-016-0943-2
  • Bisserier M, Berthouze-Duquesnes M, Breckler M, et al. Carabin protects against cardiac hypertrophy by blocking calcineurin, Ras, and Ca2+/calmodulin-dependent protein kinase II signaling. Circulation. 2015 Jan 27;131(4):390–400. discussion 400. doi: 10.1161/circulationaha.114.010686
  • Gul R, Shawl AI, Kim SH, et al. Cooperative interaction between reactive oxygen species and Ca2+ signals contributes to angiotensin II-induced hypertrophy in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol. 2012 Feb 15;302(4):H901–909. doi: 10.1152/ajpheart.00250.2011
  • Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res. 2000 Jul;47(1):23–37. doi: 10.1016/s0008-6363(00)00076-6
  • Stylianidis V, Hermans KCM, Blankesteijn WM. Wnt signaling in cardiac remodeling and heart failure. Handb Exp Pharmacol. 2017;243:371–393. doi: 10.1007/164_2016_56
  • Li Q, Jiang W, Wan Z, et al. Polyphyllin I attenuates pressure over-load induced cardiac hypertrophy via inhibition of Wnt/beta-catenin signaling pathway. Life Sci. 2020 Jul 1;252:117624. doi: 10.1016/j.lfs.2020.117624
  • Malekar P, Hagenmueller M, Anyanwu A, et al. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension. 2010 Apr;55(4):939–945. doi: 10.1161/HYPERTENSIONAHA.109.141127
  • Li Y, Ha T, Gao X, et al. NF-κB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol. 2004 Oct;287(4):H1712–H1720.
  • Zhang Q, Wang F, Wang F. et al. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol. 2020 Jan;235(1):245–253.
  • Silva J, da Costa Martins PA. Non-coding RNAs in the therapeutic landscape of pathological cardiac hypertrophy. Cells. 2022 May 31;11(11):1805. doi: 10.3390/cells11111805
  • Shahid M, Spagnolli E, Ernande L, et al. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2016 Apr 15;310(8):H984–994. doi: 10.1152/ajpheart.00879.2015
  • Luo JY, Zhang Y, Wang L, et al. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system. J Physiol. 2015 Jul 15;593(14):2995–3011. doi: 10.1113/JP270207
  • Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol. 2011 Oct;51(4):600–606. doi: 10.1016/j.yjmcc.2010.10.033
  • Prud’homme GJ. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest. 2007 Nov;87(11):1077–1091. doi: 10.1038/labinvest.3700669
  • Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in Cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016 May 2;8(5):a021873. doi: 10.1101/cshperspect.a021873
  • Gomez-Bernal F, Quevedo-Abeledo JC, Garcia-Gonzalez M, et al. Serum levels of transforming growth factor beta 1 in systemic lupus erythematosus patients. Biomolecules.2022 Dec 29;13(1):73. doi: 10.3390/biom13010073
  • Hanna A, Frangogiannis NG. The role of the TGF-beta superfamily in myocardial infarction. Front Cardiovasc Med. 2019 Sep 18;6:140. doi: 10.3389/fcvm.2019.00140
  • Yue Y, Meng K, Pu Y. et al. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabet Res Clin Pract. 2017 Nov;133:124–130.
  • Boluyt MO, Bing OH, Lakatta EG. The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur Heart J. 1995 Dec;16(suppl N):19–30. doi: 10.1093/eurheartj/16.suppl_n.19
  • Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab. 2000 Sep-Oct;71(1–2):418–435. doi: 10.1006/mgme.2000.3032
  • Rosenkranz S, Flesch M, Amann K, et al. Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β 1. Am J Physiol Heart Circ Physiol. 2002 Sep;283(3):H1253–H1262.
  • Izumi M, Fujio Y, Kunisada K, et al. Bone morphogenetic protein-2 inhibits serum deprivation-induced apoptosis of neonatal cardiac myocytes through activation of the Smad1 pathway. J Biol Chem. 2001 Aug 17;276(33):31133–31141. doi: 10.1074/jbc.M101463200
  • Heger J, Schulz R, Euler G. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure. Br J Pharmacol. 2016 Jan;173(1):3–14. doi: 10.1111/bph.13344
  • Frangogiannis NG. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol. 2022 Jul;19(7):435–455. doi: 10.1038/s41569-021-00646-w
  • Koitabashi N, Danner T, Zaiman AL, et al. Pivotal role of cardiomyocyte TGF-beta signaling in the murine pathological response to sustained pressure overload. J Clin Invest. 2011 Jun;121(6):2301–2312.
  • Ren J, Zhang N, Liao H, et al. Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro. Life Sci. 2017 Jul 15;181:53–61. doi: 10.1016/j.lfs.2017.04.016
  • Heger J, Warga B, Meyering B, et al. TGFbeta receptor activation enhances cardiac apoptosis via SMAD activation and concomitant NO release. J Cell Physiol. 2011 Oct;226(10):2683–2690.
  • Yan L, Wei X, Tang QZ, et al. Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3beta and TGF-beta1-Smad signalling. Cardiovasc Res. 2011 Oct 1;92(1):85–94. doi: 10.1093/cvr/cvr159
  • Zhang Y, Lin X, Chu Y, et al. Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFbeta1/Smad signaling. Cardiovasc Diabetol.2021 Jun 11;20(1):121. doi: 10.1186/s12933-021-01312-8
  • Huang H, Tang Y, Wu G, et al. ALK7 protects against pathological cardiac hypertrophy in mice. Cardiovasc Res.2015 Oct 1;108(1):50–61. doi: 10.1093/cvr/cvv206
  • Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, et al. TGF-beta signaling in vascular fibrosis. Cardiovasc Res. 2007 May 1;74(2):196–206. doi: 10.1016/j.cardiores.2007.02.008
  • Mendes AS, Blascke de Mello MM, Parente JM, et al. Verapamil decreases calpain-1 and matrix metalloproteinase-2 activities and improves hypertension-induced hypertrophic cardiac remodeling in rats. Life Sci. 2020 Mar 1;244:117153. doi: 10.1016/j.lfs.2019.117153
  • Zhang Y, Lin X, Chu Y, et al. Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling. Cardiovasc Diabetol.2021 Jun 11;20(1):121. doi: 10.1186/s12933-021-01312-8
  • Seksaria S, Mehan S, Dutta BJ. et al. Oxymatrine and insulin resistance: focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol. 2023 May;37(5):e23330.
  • Li G, Yang L, Feng L, et al. Syringaresinol protects against type 1 diabetic cardiomyopathy by alleviating inflammation responses, cardiac fibrosis, and oxidative stress. Mol Nutr Food Res. 2020 Sep;64(18):e2000231. doi: 10.1002/mnfr.202000231
  • Kovács MG, Kovács ZZA, Varga Z, et al. Investigation of the antihypertrophic and antifibrotic effects of losartan in a rat model of radiation-induced heart disease. Int J Mol Sci. 2021 Nov 30;22(23):12963. doi: 10.3390/ijms222312963
  • Wang P, Luo L, Shen Q, et al. Rosuvastatin improves myocardial hypertrophy after hemodynamic pressure overload via regulating the crosstalk of Nrf2/ARE and TGF-β/smads pathways in rat heart. Eur J Pharmacol. 2018 Feb 5;820:173–182. doi: 10.1016/j.ejphar.2017.12.013
  • Yagi S, Aihara K, Ikeda Y, et al. Pitavastatin, an HMG-CoA reductase inhibitor, exerts eNOS-independent protective actions against angiotensin II induced cardiovascular remodeling and renal insufficiency. Circ Res. 2008 Jan 4;102(1):68–76. doi: 10.1161/circresaha.107.163493
  • Fu YK, Wang BJ, Tseng JC, et al. Combination treatment of docetaxel with caffeic acid phenethyl ester suppresses the survival and the proliferation of docetaxel-resistant prostate cancer cells via induction of apoptosis and metabolism interference. J Biomed Sci.2022 Feb 23;29(1):16. doi: 10.1186/s12929-022-00797-z
  • Yuan P, Liu J, Xiong S, et al. Effects and mechanism of compound qidan formula on rats with HFpEF induced by hypertension and diabetes mellitus based on Ang II/TGF-β1/Smads signaling pathway. J Ethnopharmacol. 2023 Sep 15;313:116558. doi: 10.1016/j.jep.2023.116558
  • Syed AM, Kundu S, Ram C. et al. Up-regulation of Nrf2/HO-1 and inhibition of TGF-β1/Smad2/3 signaling axis by daphnetin alleviates transverse aortic constriction-induced cardiac remodeling in mice. Free Radic Biol Med. 2022 Jun;186:17–30.
  • Syed AM, Kundu S, Ram C, et al. Aloin alleviates pathological cardiac hypertrophy via modulation of the oxidative and fibrotic response. Life Sci. 2022 Jan 1;288:120159. doi: 10.1016/j.lfs.2021.120159
  • Yu J, Zhao X, Yan X, et al. Aloe-emodin ameliorated MI-induced cardiac remodeling in mice via inhibiting TGF-β/SMAD signaling via up-regulating SMAD7. Phytomedicine. 2023 Jun;114:154793. doi: 10.1016/j.phymed.2023.154793
  • Lim JY, Park SJ, Hwang HY, et al. TGF-beta1 induces cardiac hypertrophic responses via PKC-dependent ATF-2 activation. J Mol Cell Cardiol. 2005 Oct;39(4):627–636.
  • Braz JC, Bueno OF, De Windt LJ, et al. PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellular signal-regulated kinase1/2 (ERK1/2). J Cell Bio. 2002 Mar 4;156(5):905–919. doi: 10.1083/jcb.200108062
  • Pan J, Singh US, Takahashi T. et al. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol. 2005 Feb;202(2):536–553.
  • Li J, Huang J, Lu J, et al. Sirtuin 1 represses PKC-zeta activity through regulating interplay of acetylation and phosphorylation in cardiac hypertrophy. Br J Pharmacol. 2019 Feb;176(3):416–435.
  • Uenoyama M, Ogata S, Nakanishi K. et al. Protein kinase C mRNA and protein expressions in hypobaric hypoxia-induced cardiac hypertrophy in rats. Acta Physiol (Oxf). 2010 Apr;198(4):431–440.
  • Braun MU, LaRosée P, Schön S, et al. Differential regulation of cardiac protein kinase C isozyme expression after aortic banding in rat. Cardiovasc Res. 2002 Oct;56(1):52–63.
  • Jeong D, Cha H, Kim E, et al. PICOT inhibits cardiac hypertrophy and enhances ventricular function and cardiomyocyte contractility. Circ Res. 2006 Aug 4;99(3):307–314. doi: 10.1161/01.RES.0000234780.06115.2c
  • Choudhary G, Troncales F, Martin D. et al. Bosentan attenuates right ventricular hypertrophy and fibrosis in normobaric hypoxia model of pulmonary hypertension. J Heart Lung Transplant. 2011 Jul;30(7):827–833.
  • Wang M, Zhang WB, Zhu JH, et al. Breviscapine ameliorates hypertrophy of cardiomyocytes induced by high glucose in diabetic rats via the PKC signaling pathway. Acta Pharmacol Sin. 2009 Aug;30(8):1081–1091. doi: 10.1038/aps.2009.95
  • Yan L, Huang H, Tang QZ, et al. Breviscapine protects against cardiac hypertrophy through blocking PKC-alpha-dependent signaling. J Cell Biochem. 2010 Apr 15;109(6):1158–1171. doi: 10.1002/jcb.22495
  • Luo M, Chen PP, Yang L. et al. Sodium ferulate inhibits myocardial hypertrophy induced by abdominal coarctation in rats: involvement of cardiac PKC and MAPK signaling pathways. Biomed Pharmacother. 2019 Apr;112:108735.
  • Bae S, Yalamarti B, Ke Q, et al. Preventing progression of cardiac hypertrophy and development of heart failure by paricalcitol therapy in rats. Cardiovasc Res. 2011 Sep 1;91(4):632–639. doi: 10.1093/cvr/cvr133
  • Bao D, Lu D, Liu N, et al. Tomoregulin-1 prevents cardiac hypertrophy after pressure overload in mice by inhibiting TAK1-JNK pathways. Dis Model Mech. 2015 Aug 1;8(8):795–804. doi: 10.1242/dmm.021303
  • Si L, Xu J, Yi C, et al. Asiatic acid attenuates cardiac hypertrophy by blocking transforming growth factor-beta1-mediated hypertrophic signaling in vitro and in vivo. Int J Mol Med. 2014 Aug;34(2):499–506.
  • Yan X, Zhao R, Feng X, et al. Sialyltransferase7A promotes angiotensin II-induced cardiomyocyte hypertrophy via HIF-1alpha-TAK1 signalling pathway. Cardiovasc Res. 2020 Jan 1;116(1):114–126. doi: 10.1093/cvr/cvz064
  • Huang XY, Chen CX. Effect of oxymatrine, the active component from radix sophorae flavescentis (Kushen), on ventricular remodeling in spontaneously hypertensive rats. Phytomedicine. 2013 Feb 15;20(3–4):202–212. doi: 10.1016/j.phymed.2012.10.012
  • Zhao J, Jiang X, Liu J, et al. Dual-specificity phosphatase 26 protects against cardiac hypertrophy through TAK1. J Am Heart Assoc. 2021 Feb 16;10(4):e014311. doi: 10.1161/JAHA.119.014311
  • Huang H, Tang QZ, Wang AB, et al. Tumor suppressor A20 protects against cardiac hypertrophy and fibrosis by blocking transforming growth factor-beta-activated kinase 1-dependent signaling. Hypertension. 2010 Aug;56(2):232–239.
  • Chen L, Huang J, Ji YX, et al. Tripartite Motif 8 contributes to pathological cardiac hypertrophy through enhancing transforming growth factor beta-activated kinase 1-dependent signaling pathways. Hypertension. 2017 Feb;69(2):249–258.
  • Ma ZG, Yuan YP, Zhang X, et al. C1q-tumour necrosis factor-related protein-3 exacerbates cardiac hypertrophy in mice. Cardiovasc Res. 2019 May 1;115(6):1067–1077. doi: 10.1093/cvr/cvy279
  • Guo S, Liu Y, Gao L, et al. TBC1D25 regulates cardiac remodeling through TAK1 signaling pathway. Int J Biol Sci. 2020 Feb 21;16(8):1335–1348. doi: 10.7150/ijbs.41130
  • Dai L, Aye Thu C, Liu XY, et al. TAK1, more than just innate immunity. IUBMB Life. 2012 Oct;64(10):825–834. doi: 10.1002/iub.1078
  • Zhang D, Gaussin V, Taffet GE, et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med. 2000 May;6(5):556–563. doi: 10.1038/75037
  • Li J, Yan C, Wang Y, et al. GCN5-mediated regulation of pathological cardiac hypertrophy via activation of the TAK1-JNK/p38 signaling pathway. Cell Death Dis.2022 Apr 30;13(4):421. doi: 10.1038/s41419-022-04881-y
  • Choukroun G, Hajjar R, Fry S, et al. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH(2)-terminal kinases. J Clin Invest. 1999 Aug;104(4):391–398.
  • Li CY, Zhou Q, Yang LC, et al. Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway. Basic Res Cardiol. 2016 Mar;111(2):19. doi: 10.1007/s00395-016-0536-7
  • Bansal T, Chatterjee E, Singh J, et al. Arjunolic acid, a peroxisome proliferator-activated receptor α agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling. J Biol Chem. 2017 Oct 6;292(40):16440–16462. doi: 10.1074/jbc.M117.788299
  • Mian MOR, He Y, Bertagnolli M, et al. TLR (toll-like receptor) 4 antagonism prevents left ventricular hypertrophy and dysfunction caused by neonatal hyperoxia exposure in rats. Hypertension. 2019 Oct;74(4):843–853. doi: 10.1161/hypertensionaha.119.13022
  • Guo Z, Liu FY, Yang D. et al. Salidroside ameliorates pathological cardiac hypertrophy via TLR4-TAK1-dependent signaling. Phytother Res. 2023 May;37(5):1839–1849.
  • Chen Y, Lin W, Chen P. et al. Tabersonine alleviates obesity-induced cardiomyopathy by binding to transforming growth factor activated kinase 1 (TAK1) and inhibiting TAK1-mediated inflammation. Phytother Res. 2023 Mar;37(3):860–871.
  • Dai C, Luo W, Chen Y, et al. Tabersonine attenuates angiotensin II-induced cardiac remodeling and dysfunction through targeting TAK1 and inhibiting TAK1-mediated cardiac inflammation. Phytomedicine. 2022 Aug;103:154238. doi: 10.1016/j.phymed.2022.154238
  • Wang X, Jiang S, Fei L, et al. Tacrolimus causes hypertension by increasing vascular contractility via RhoA (Ras homolog family member A)/ROCK (Rho-associated protein kinase) pathway in mice. Hypertension. 2022 Oct;79(10):2228–2238. doi: 10.1161/HYPERTENSIONAHA.122.19189
  • Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther.2022 Mar 10;7(1):78. doi: 10.1038/s41392-022-00925-z
  • Zhou Q, Wei SS, Wang H, et al. Crucial role of ROCK2-mediated phosphorylation and upregulation of FHOD3 in the pathogenesis of angiotensin II-Induced cardiac hypertrophy. Hypertension. 2017 Jun;69(6):1070–1083.
  • Zeidan A, Javadov S, Chakrabarti S, et al. Leptin-induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK-dependent p38 MAPK translocation to nuclei. Cardiovasc Res. 2008 Jan;77(1):64–72.
  • Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 2006 Feb 17;98(3):322–334. doi: 10.1161/01.RES.0000201960.04223.3c
  • Hunter JC, Zeidan A, Javadov S. et al. Nitric oxide inhibits endothelin-1-induced neonatal cardiomyocyte hypertrophy via a RhoA-ROCK-dependent pathway. J Mol Cell Cardiol. 2009 Dec;47(6):810–818.
  • Nour-Eldine W, Ghantous CM, Zibara K, et al. Adiponectin attenuates angiotensin II-Induced vascular smooth muscle Cell remodeling through nitric oxide and the RhoA/ROCK pathway. Front Pharmacol. 2016 Apr 7;7:86. doi: 10.3389/fphar.2016.00086
  • Chen B, Gong S, Li M. et al. Protective effect of oxyberberine against acute lung injury in mice via inhibiting RhoA/ROCK signaling pathway. Biomed Pharmacother. 2022 Sep;153:113307.
  • Kilian LS, Voran J, Frank D, et al. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci.2021 Apr 28;28(1):33. doi: 10.1186/s12929-021-00730-w
  • Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res. 2006 Mar 31;98(6):730–742. doi: 10.1161/01.RES.0000216039.75913.9e
  • Noma K, Oyama N, Liao JK. Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol. 2006 Mar;290(3):C661–668. doi: 10.1152/ajpcell.00459.2005
  • Zeidan A, Javadov S, Karmazyn M. Essential role of Rho/ROCK-dependent processes and actin dynamics in mediating leptin-induced hypertrophy in rat neonatal ventricular myocytes. Cardiovasc Res. 2006 Oct 1;72(1):101–111. doi: 10.1016/j.cardiores.2006.06.024
  • Oka M, Fagan KA, Jones PL. et al. Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol. 2008 Oct;155(4):444–454.
  • Zhu L, Liu F, Hao Q, et al. Dietary geranylgeranyl pyrophosphate counteracts the benefits of statin therapy in experimental pulmonary hypertension. Circulation.2021 May 4;143(18):1775–1792. doi: 10.1161/CIRCULATIONAHA.120.046542
  • Takayama N, Kai H, Kudo H, et al. Simvastatin prevents large blood pressure variability induced aggravation of cardiac hypertrophy in hypertensive rats by inhibiting RhoA/Ras-ERK pathways. Hypertens Res. 2011 Mar;34(3):341–347.
  • Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003 Oct 17;93(8):767–775. doi: 10.1161/01.Res.0000096650.91688.28
  • Abe K, Shimokawa H, Morikawa K, et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res. 2004 Feb 20;94(3):385–393. doi: 10.1161/01.Res.0000111804.34509.94
  • Li FH, Xia W, Li AW, et al. Inhibition of rho kinase attenuates high flow induced pulmonary hypertension in rats. Chin Med J (Engl). 2007 Jan 5;120(1):22–29. doi: 10.1097/00029330-200701010-00005
  • Ren J, Fang CX. Small guanine nucleotide-binding protein Rho and myocardial function. Acta Pharmacol Sin. 2005 Mar;26(3):279–285. doi: 10.1111/j.1745-7254.2005.00059.x
  • Liou SF, Hsu JH, Chen YT, et al. KMUP-1 attenuates endothelin-1-induced cardiomyocyte hypertrophy through activation of heme oxygenase-1 and suppression of the Akt/GSK-3β, calcineurin/NFATc4 and RhoA/ROCK pathways. Molecules. 2015 Jun 5;20(6):10435–10449. doi: 10.3390/molecules200610435
  • Pei H, Wang W, Zhao D, et al. G protein-coupled estrogen receptor 1 inhibits angiotensin II-Induced cardiomyocyte hypertrophy via the regulation of PI3K-Akt-mTOR signalling and autophagy. Int J Biol Sci. 2019 Jan 6;15(1):81–92. doi: 10.7150/ijbs.28304
  • Yang J, Xu J, Han X, et al. Lysophosphatidic Acid Is Associated With Cardiac Dysfunction and Hypertrophy by Suppressing Autophagy via the LPA3/AKT/mTOR Pathway. Front Physiol. 2018 Sep 18;9:1315. doi: 10.3389/fphys.2018.01315
  • Guan P, Sun ZM, Wang N, et al. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway. Life Sci. 2019 Sep 15;233:116748. doi: 10.1016/j.lfs.2019.116748
  • Gao W, Guo N, Zhao S, et al. Carboxypeptidase A4 promotes cardiomyocyte hypertrophy through activating PI3K-AKT-mTOR signaling. Biosci Rep. 2020 May 29;40(5): BSR20200669. 10.1042/BSR20200669
  • Clemente CF, Xavier-Neto J, Dalla Costa AP. et al. Focal adhesion kinase governs cardiac concentric hypertrophic growth by activating the AKT and mTOR pathways. J Mol Cell Cardiol. 2012 Feb;52(2):493–501.
  • Cui Y, Wang Y, Liu G. Epigallocatechin gallate (EGCG) attenuates myocardial hypertrophy and fibrosis induced by transverse aortic constriction via inhibiting the Akt/mTOR pathway. Pharm Biol. 2021 Dec;59(1):1305–1313. doi: 10.1080/13880209.2021.1972124
  • Gao W, Guo N, Zhao S. et al. HTR2A promotes the development of cardiac hypertrophy by activating PI3K-PDK1-AKT-mTOR signaling. Cell Stress Chaperones. 2020 Nov;25(6):899–908.
  • Benard L, Oh JG, Cacheux M, et al. Cardiac Stim1 silencing impairs adaptive hypertrophy and promotes heart failure through inactivation of mTorc2/akt signaling. Circulation. 2016 Apr 12;133(15):1458–1471. discussion 1471. doi: 10.1161/CIRCULATIONAHA.115.020678
  • Kuzman JA, O’Connell TD, Gerdes AM. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy. Endocrinology. 2007 Jul;148(7):3477–3484. doi: 10.1210/en.2007-0099
  • Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001 Nov;3(11):1014–1019. doi: 10.1038/ncb1101-1014
  • Ba L, Gao J, Chen Y, et al. Allicin attenuates pathological cardiac hypertrophy by inhibiting autophagy via activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Phytomedicine. 2019 May;58:152765. doi: 10.1016/j.phymed.2018.11.025
  • Wang HB, Huang SH, Xu M, et al. Galangin ameliorates cardiac remodeling via the MEK1/2-ERK1/2 and PI3K-AKT pathways. J Cell Physiol. 2019 Sep;234(9):15654–15667.
  • Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol. 2009 Nov;104(6):653–667. doi: 10.1007/s00395-009-0043-1
  • Zhao D, Wang W, Wang H, et al. PKD knockdown inhibits pressure overload-induced cardiac hypertrophy by promoting autophagy via AKT/mTOR pathway. Int J Biol Sci. 2017 Feb 12;13(3):276–285. doi: 10.7150/ijbs.17617
  • Sun TL, Li WQ, Tong XL, et al. Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway. Eur J Pharmacol. 2021 Jan 15;891:173690. doi: 10.1016/j.ejphar.2020.173690
  • Li HL, Huang Y, Zhang CN, et al. Epigallocatechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med. 2006 May 15;40(10):1756–1775. doi: 10.1016/j.freeradbiomed.2006.01.005
  • Xu CN, Kong LH, Ding P, et al. Melatonin ameliorates pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165848. doi: 10.1016/j.bbadis.2020.165848
  • Wan M, Yin K, Yuan J, et al. YQFM alleviated cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI(3)K/AKT/mTOR pathway. J Ethnopharmacol. 2022 Mar 1;285:114835. doi: 10.1016/j.jep.2021.114835
  • Chen Y, Pan R, Zhang J, et al. Pinoresinol diglucoside (PDG) attenuates cardiac hypertrophy via AKT/mTOR/NF-κB signaling in pressure overload-induced rats. J Ethnopharmacol. 2021 May 23;272:113920. doi: 10.1016/j.jep.2021.113920
  • Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020 Oct;21(10):607–632. doi: 10.1038/s41580-020-0255-7
  • Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002 Nov 1;91(9):776–781. doi: 10.1161/01.res.0000038488.38975.1a
  • Yanazume T, Hasegawa K, Wada H, et al. Rho/ROCK pathway contributes to the activation of extracellular signal-regulated kinase/GATA-4 during myocardial cell hypertrophy. J Biol Chem. 2002 Mar 8;277(10):8618–8625. doi: 10.1074/jbc.M107924200
  • Duangrat R, Parichatikanond W, Morales NP, et al. Sustained AT(1)R stimulation induces upregulation of growth factors in human cardiac fibroblasts via G(alphaq)/TGF-beta/ERK signaling that influences myocyte hypertrophy. Eur J Pharmacol. 2022 Dec 15;937:175384. doi: 10.1016/j.ejphar.2022.175384
  • Anestopoulos I, Kavo A, Tentes I. et al. Silibinin protects H9c2 cardiac cells from oxidative stress and inhibits phenylephrine-induced hypertrophy: potential mechanisms. J Nutr Biochem. 2013 Mar;24(3):586–594.
  • Meng H, Du Z, Lu W, et al. Baoyuan decoction (BYD) attenuates cardiac hypertrophy through ANKRD1-ERK/GATA4 pathway in heart failure after acute myocardial infarction. Phytomedicine. 2021 Aug;89:153617. doi: 10.1016/j.phymed.2021.153617
  • Zhang M, Guo F, Li X, et al. Yi-Xin-shu capsule ameliorates cardiac hypertrophy by regulating RB/HDAC1/GATA4 signaling pathway based on proteomic and mass spectrometry image analysis. Phytomedicine. 2022 Aug;103:154185. doi: 10.1016/j.phymed.2022.154185
  • Chen G, Pan SQ, Shen C, et al. Puerarin inhibits angiotensin II-induced cardiac hypertrophy via the redox-sensitive ERK1/2, p38 and NF-κB pathways. Acta Pharmacol Sin. 2014 Apr;35(4):463–475. doi: 10.1038/aps.2013.185
  • Weng LQ, Zhang WB, Ye Y, et al. Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice. Acta Pharmacol Sin. 2014 Aug;35(8):1005–1014. doi: 10.1038/aps.2014.45
  • Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 2005 Jun;16(3):251–263. doi: 10.1016/j.cytogfr.2005.01.009
  • Bueno OF, De Windt LJ, Tymitz KM, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 2000 Dec 1;19(23):6341–6350. doi: 10.1093/emboj/19.23.6341
  • Xin Z, Wang J, Li S, et al. A review of BMP and Wnt signaling pathway in the pathogenesis of pulmonary arterial hypertension. Clin Exp Hypertens. 2022 Feb 17;44(2):175–180. doi: 10.1080/10641963.2021.1996590
  • Morrell NW, Bloch DB, ten Dijke P, et al. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol. 2016 Feb;13(2):106–120. doi: 10.1038/nrcardio.2015.156
  • Umans L, Cox L, Tjwa M. et al. Inactivation of Smad5 in endothelial cells and smooth muscle cells demonstrates that Smad5 is required for cardiac homeostasis. Am J Pathol. 2007 May;170(5):1460–1472.
  • Miyazono K. Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Bone. 1999 Jul;25(1):91–93. doi: 10.1016/s8756-3282(99)00113-1
  • Pardali K, Kowanetz M, Heldin CH, et al. Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). J Cell Physiol. 2005 Jul;204(1):260–272.
  • Liu G, Ma C, Yang H. et al. Transforming growth factor β and its role in heart disease. Exp Ther Med. 2017 May;13(5):2123–2128.
  • Bujak M, Ren G, Kweon HJ, et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation. 2007 Nov 6;116(19):2127–2138. doi: 10.1161/circulationaha.107.704197
  • Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003 Oct 9;425(6958):577–584. doi: 10.1038/nature02006
  • Ogura Y, Ouchi N, Ohashi K, et al. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation.2012 Oct 2;126(14):1728–1738. doi: 10.1161/CIRCULATIONAHA.112.115089
  • Lu J, Sun B, Huo R. et al. Bone morphogenetic protein-2 antagonizes bone morphogenetic protein-4 induced cardiomyocyte hypertrophy and apoptosis. J Cell Physiol. 2014 Oct;229(10):1503–1510.
  • Sun S, Yang S, Zhang N, et al. Astragalus polysaccharides alleviates cardiac hypertrophy in diabetic cardiomyopathy via inhibiting the BMP10-mediated signaling pathway. Phytomedicine. 2023 Jan;109:154543. doi: 10.1016/j.phymed.2022.154543
  • Ding W, Dong M, Deng J, et al. Polydatin attenuates cardiac hypertrophy through modulation of cardiac Ca2+ handling and calcineurin-NFAT signaling pathway. Am J Physiol Heart Circ Physiol. 2014 Sep 1;307(5):H792–802. doi: 10.1152/ajpheart.00017.2014
  • Saito T, Fukuzawa J, Osaki J. et al. Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy. J Mol Cell Cardiol. 2003 Sep;35(9):1153–1160.
  • Du Y, Demillard LJ, Ren J. Catecholamine-induced cardiotoxicity: a critical element in the pathophysiology of stroke-induced heart injury. Life Sci. 2021 Dec 15;287:120106. doi: 10.1016/j.lfs.2021.120106
  • Shimoyama M, Hayashi D, Takimoto E, et al. Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. Circulation. 1999 Dec 14;100(24):2449–2454. doi: 10.1161/01.cir.100.24.2449
  • Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005 Feb;11(2):214–222. doi: 10.1038/nm1175
  • Takeda Y, Yoneda T, Demura M, et al. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002 Feb 12;105(6):677–679. doi: 10.1161/hc0602.104675
  • Fiedler B, Wollert KC. Interference of antihypertrophic molecules and signaling pathways with the Ca2±calcineurin-NFAT cascade in cardiac myocytes. Cardiovasc Res. 2004 Aug 15;63(3):450–457. doi: 10.1016/j.cardiores.2004.04.002
  • Hong MH, Na SW, Jang YJ, et al. Betulinic acid improves cardiac-renal dysfunction caused by hypertrophy through calcineurin-NFATc3 signaling. Nutrients.2021 Sep 30;13(10):3484. doi: 10.3390/nu13103484
  • Yoon JJ, Son CO, Kim HY, et al. Betulinic acid protects DOX-Triggered cardiomyocyte hypertrophy response through the GATA-4/Calcineurin/NFAT pathway. Molecules. 2020 Dec 24;26(1):53. doi: 10.3390/molecules26010053
  • Zhou X, Zhang Q, Zhao T, et al. Cisapride protects against cardiac hypertrophy via inhibiting the up-regulation of calcineurin and NFATc-3. Eur J Pharmacol. 2014 Jul 15;735:202–210. doi: 10.1016/j.ejphar.2014.04.012
  • Gunnell LM, Jonason JH, Loiselle AE, et al. TAK1 regulates cartilage and joint development via the MAPK and BMP signaling pathways. J Bone Miner Res. 2010 Aug;25(8):1784–1797. doi: 10.1002/jbmr.79
  • Yamaguchi K, Nagai S, Ninomiya-Tsuji J, et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J. 1999 Jan 4;18(1):179–187. doi: 10.1093/emboj/18.1.179
  • Augeri DJ, Langenfeld E, Castle M, et al. Inhibition of BMP and of TGFβ receptors downregulates expression of XIAP and TAK1 leading to lung cancer cell death. Mol Cancer. 2016 Apr 6;15(1):27. doi: 10.1186/s12943-016-0511-9
  • Qin W, Du N, Zhang L. et al. Genistein alleviates pressure overload-induced cardiac dysfunction and interstitial fibrosis in mice. Br J Pharmacol. 2015 Dec;172(23):5559–5572.
  • Ma SQ, Guo Z, Liu FY, et al. 6-gingerol protects against cardiac remodeling by inhibiting the p38 mitogen-activated protein kinase pathway. Acta Pharmacol Sin. 2021 Oct;42(10):1575–1586. doi: 10.1038/s41401-020-00587-z
  • Ling S, Sun Q, Li Y, et al. CKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A. Circulation. 2012 Dec 18;126(25):3028–3040. doi: 10.1161/CIRCULATIONAHA.112.102780
  • Taglieri DM, Monasky MM, Knezevic I. et al. Ablation of p21-activated kinase-1 in mice promotes isoproterenol-induced cardiac hypertrophy in association with activation of Erk1/2 and inhibition of protein phosphatase 2A. J Mol Cell Cardiol. 2011 Dec;51(6):988–996.
  • Yoon S, Kook T, Min HK, et al. PP2A negatively regulates the hypertrophic response by dephosphorylating HDAC2 S394 in the heart. Exp Mol Med. 2018 Jul 26;50(7):1–14. doi: 10.1038/s12276-018-0121-2
  • Ke Y, Wang L, Pyle WG, et al. Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res. 2004 Feb 6;94(2):194–200. doi: 10.1161/01.RES.0000111522.02730.56
  • Zhao Y, Ling S, Zhong G, et al. Casein kinase-2 interacting protein-1 regulates physiological cardiac hypertrophy via inhibition of histone deacetylase 4 phosphorylation. Front Physiol. 2021 Jun 15;12:678863. doi: 10.3389/fphys.2021.678863
  • Ren J, Wu NN, Wang S, et al. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev. 2021 Oct 1;101(4):1745–1807. doi: 10.1152/physrev.00030.2020
  • Yang B, Zhao Y, Luo W, et al. Macrophage DCLK1 promotes obesity-induced cardiomyopathy via activating RIP2/TAK1 signaling pathway. Cell Death Dis.2023 Jul 13;14(7):419. doi: 10.1038/s41419-023-05960-4
  • Sun X, Han F, Lu Q, et al. Empagliflozin ameliorates obesity-related cardiac dysfunction by regulating Sestrin2-mediated AMPK-mTOR signaling and Redox homeostasis in high-fat diet-induced obese mice. Diabetes. 2020 Jun;69(6):1292–1305.