151
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

SIRT1 alleviates insulin resistance and respiratory distress in late preterm rats by activating QKI5-mediated PPARγ/PI3K/AKT pathway

, , , , , , , ORCID Icon & show all
Pages 2449-2466 | Received 18 Jan 2023, Accepted 15 Dec 2023, Published online: 26 Dec 2023

References

  • Qiu X, Lee SK, Tan K, et al. Comparison of singleton and multiple-birth outcomes of infants born at or before 32 weeks of gestation. Obstet Gynecol. 2008;111(2 Pt 1):365–371. doi: 10.1097/AOG.0b013e318162688f
  • Gerten KA, Coonrod DV, Bay RC, et al. Cesarean delivery and respiratory distress syndrome: does labor make a difference? Am J Obstet Gynecol. 2005;193(3 Pt 2):1061–1064. doi: 10.1016/j.ajog.2005.05.038
  • Hintz SR, Van Meurs KP, Perritt R, et al. Neurodevelopmental outcomes of premature infants with severe respiratory failure enrolled in a randomized controlled trial of inhaled nitric oxide. J Pediatr. 2007;151(1):16-22, 22 e11–13. doi: 10.1016/j.jpeds.2007.03.017
  • Becquet O, El Khabbaz F, Alberti C, et al. Insulin treatment of maternal diabetes mellitus and respiratory outcome in late-preterm and term singletons. BMJ Open. 2015;5(6):e008192. doi: 10.1136/bmjopen-2015-008192
  • Robert MF, Neff RK, Hubbell JP, et al. Association between maternal diabetes and the respiratory-distress syndrome in the newborn. N Engl J Med. 1976;294(7):357–360. doi: 10.1056/NEJM197602122940702
  • Bental Y, Reichman B, Shiff Y, et al. Impact of maternal diabetes mellitus on mortality and morbidity of preterm infants (24-33 weeks’ gestation). Pediatrics. 2011;128(4):e848–855. doi: 10.1542/peds.2010-3443
  • Shu XX, Chen C, Tang J, et al. Clinical effect of bubble nasal continuous positive airway pressure versus conventional nasal continuous positive airway pressure in respiratory support for preterm infants with neonatal respiratory distress syndrome. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(6):433–437. doi: 10.7499/j.issn.1008-8830.2018.06.001
  • Echaide M, Autilio C, Arroyo R, et al. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1725–1739. doi: 10.1016/j.bbamem.2017.03.015
  • Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–733. doi: 10.1016/j.jhep.2014.10.039
  • Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–513. doi: 10.1016/j.ejmech.2019.01.067
  • Wang S, Moustaid-Moussa N, Chen L, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014;25(1):1–18. doi: 10.1016/j.jnutbio.2013.09.001
  • Wagner N, Wagner KD. PPAR beta/delta and the hallmarks of cancer. Cells. 2020;9(5):1133. doi: 10.3390/cells9051133
  • Wang Y, Nakajima T, Gonzalez FJ, et al. PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-Null mice. Int J Mol Sci. 2020;21(6):2061. doi: 10.3390/ijms21062061
  • Christofides A, Konstantinidou E, Jani C, et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338. doi: 10.1016/j.metabol.2020.154338
  • Janani C, Ranjitha Kumari BD. PPAR gamma gene–a review. Diabetes Metab Syndr. 2015;9(1):46–50. doi: 10.1016/j.dsx.2014.09.015
  • Rehan VK, Sakurai R, Corral J, et al. Antenatally administered PPAR-gamma agonist rosiglitazone prevents hyperoxia-induced neonatal rat lung injury. Am J Physiol Lung Cell Mol Physiol. 2010;299(5):L672–680. doi: 10.1152/ajplung.00240.2010
  • Zhang W, Wang G, Zhou S. Protective effects of Isoliquiritigenin on LPS-Induced acute lung injury by activating PPAR-γ. Inflammation. 2018;41(4):1290–1296. doi: 10.1007/s10753-018-0777-8
  • Kurtz M, Capobianco E, Careaga V, et al. Peroxisome proliferator-activated receptor ligands regulate lipid content, metabolism, and composition in fetal lungs of diabetic rats. J Endocrinol. 2014;220(3):345–359. doi: 10.1530/JOE-13-0362
  • Huang X, Liu G, Guo J, et al. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14(11):1483–1496. doi: 10.7150/ijbs.27173
  • Saltiel AR. Insulin signaling in health and disease. J Clin Invest. 2021;131(1). doi: 10.1172/JCI142241
  • Kvandova M, Majzunova M, Dovinova I. The role of PPARgamma in cardiovascular diseases. Physiol Res. 2016;65(Suppl 3):S343–S363. doi: 10.33549/physiolres.933439
  • Yang Y, Liu Y, Wang Y, et al. Regulation of SIRT1 and its roles in inflammation. Front Immunol. 2022;13:831168. doi: 10.3389/fimmu.2022.831168
  • Iside C, Scafuro M, Nebbioso A, et al. SIRT1 activation by natural phytochemicals: an overview. Front Pharmacol. 2020;11:1225. doi: 10.3389/fphar.2020.01225
  • Xu C, Wang L, Fozouni P, et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol. 2020;22(10):1170–1179. doi: 10.1038/s41556-020-00579-5
  • He F, Li Q, Sheng B, et al. SIRT1 inhibits apoptosis by promoting autophagic flux in human nucleus pulposus cells in the key stage of degeneration via erk signal pathway. Biomed Res Int. 2021;2021:8818713. doi: 10.1155/2021/8818713
  • Qiang L, Lin HV, Kim-Muller JY, et al. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through creb deacetylation. Cell Metab. 2011;14(6):758–767. doi: 10.1016/j.cmet.2011.10.007
  • Rada P, Pardo V, Mobasher MA, et al. SIRT1 controls acetaminophen hepatotoxicity by modulating inflammation and oxidative stress. Antioxid Redox Signal. 2018;28(13):1187–1208. doi: 10.1089/ars.2017.7373
  • Liang D, Zhuo Y, Guo Z, et al. SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie. 2020;170:10–20. doi: 10.1016/j.biochi.2019.12.001
  • Zou G, Zhou Z, Xi X, et al. Pioglitazone Ameliorates Renal Ischemia-Reperfusion Injury via Inhibition of NF-kappaB Activation and Inflammation in Rats. Front Physiol. 2021;12:707344. doi: 10.3389/fphys.2021.707344
  • Lagae D, Schuler-Barazzoni M, Ungarelli-McEvoy C, et al. Respiratory distress in newborn infants in Western Switzerland. J Matern Fetal Neonatal Med. 2021;34(19):3112–3119. doi: 10.1080/14767058.2019.1678131
  • Taylor PM. Respiratory distress in the newborn. Clin Obstet Gynecol. 1971;14(3):763–789. doi: 10.1097/00003081-197109000-00008
  • Yildiz Atar H, Baatz JE, Ryan RM. Molecular mechanisms of maternal diabetes effects on fetal and neonatal surfactant. Children (Basel). 2021;8(4):281. doi: 10.3390/children8040281
  • Hermansen CL, Lorah KN. Respiratory distress in the newborn. Am Fam Physician. 2007;76(7):987–994.
  • Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harbor Perspect Biol. 2014;6(4):a018713. doi: 10.1101/cshperspect.a018713
  • Mazumder S, Barman M, Bandyopadhyay U, et al. Sirtuins as endogenous regulators of lung fibrosis: a current perspective. Life Sci. 2020;258:118201. doi: 10.1016/j.lfs.2020.118201
  • Zhang Y, Zhang H, Li S, et al. Metformin alleviates LPS-induced acute lung injury by regulating the SIRT1/NF-kappaB/NLRP3 pathway and inhibiting endothelial cell pyroptosis. Front Pharmacol. 2022;13:801337. doi: 10.3389/fphar.2022.801337
  • Cao Y, Jiang X, Ma H, et al. SIRT1 and insulin resistance. J Diabetes Complications. 2016;30(1):178–183. doi: 10.1016/j.jdiacomp.2015.08.022
  • Towfighi A, Ovbiagele B. Partial peroxisome proliferator-activated receptor agonist angiotensin receptor blockers. Potential multipronged strategy in stroke prevention. Cerebrovasc Dis. 2008;26(2):106–112. doi: 10.1159/000139656
  • Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochem Pharmacol. 2014;92(1):73–89. doi: 10.1016/j.bcp.2014.07.018
  • Zhu D, Zhou M, Wang K, et al. The downregulation of miR-129-5p relieves the inflammatory response in acute respiratory distress syndrome by regulating PPARgamma-mediated autophagy. Ann Transl Med. 2022;10(6):345. doi: 10.21037/atm-22-979
  • Chen T, Zhang Y, Liu Y, et al. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging. 2019;11(18):7510–7524. doi: 10.18632/aging.102263
  • An L, Zhao J, Sun X, et al. S-allylmercaptocysteine inhibits mucin overexpression and inflammation via MAPKs and PI3K-Akt signaling pathways in acute respiratory distress syndrome. Pharmacol Res. 2020;159:105032. doi: 10.1016/j.phrs.2020.105032
  • Ikeda H, Shiojima I, Oka T, et al. Increased akt-mTOR signaling in lung epithelium is associated with respiratory distress syndrome in mice. Mol Cell Biol. 2011;31(5):1054–1065. doi: 10.1128/MCB.00732-10
  • Feng Y, Bankston A. The star family member QKI and cell signaling. Adv Exp Med Biol. 2010;693:25–36.
  • Pillman KA, Phillips CA, Roslan S, et al. miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein quaking. EMBO J. 2018;37(13). doi: 10.15252/embj.201899016
  • Chen X, Yin J, Cao D, et al. The emerging roles of the RNA binding protein QKI in cardiovascular development and function. Front Cell Dev Biol. 2021;9:668659. doi: 10.3389/fcell.2021.668659
  • Zhang W, Sun Y, Liu W, et al. SIRT1 mediates the role of RNA-binding protein QKI 5 in the synthesis of triglycerides in non-alcoholic fatty liver disease mice via the PPARalpha/FoxO1 signaling pathway. Int J Mol Med. 2019;43(3):1271–1280. doi: 10.3892/ijmm.2019.4059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.