157
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Drug-induced inhibition of HMGA and EZH2 activity as a possible therapy for anaplastic thyroid carcinoma

, , , , , , , & show all
Pages 2552-2565 | Received 20 Jul 2023, Accepted 14 Dec 2023, Published online: 02 Jan 2024

References

  • Wells SA Jr. Progress in endocrine neoplasia. Clin Cancer Res. 2016 Oct 15;22(20):4981–4988. PubMed PMID: 27742784; PubMed Central PMCID: PMCPMC5111798. doi: 10.1158/1078-0432.CCR-16-0384
  • Bai Y, Kakudo K, Jung CK. Updates in the pathologic classification of thyroid neoplasms: a review of the world health organization classification. Endocrinol Metab (Seoul). 2020 Dec;35(4):696–715. PubMed PMID: 33261309; PubMed Central PMCID: PMCPMC7803616. doi: 10.3803/EnM.2020.807
  • Baloch ZW, Asa SL, Barletta JA, et al. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr Pathol. 2022 Mar;33(1):27–63. PubMed PMID: 35288841. doi: 10.1007/s12022-022-09707-3
  • Hu J, Yuan IJ, Mirshahidi S, et al. Thyroid carcinoma: phenotypic features, underlying biology and potential relevance for targeting therapy. Int J Mol Sci. 2021 Feb 16;22(4): PubMed PMID: 33669363; PubMed Central PMCID: PMCPMC7920269. doi: 10.3390/ijms22041950
  • Tesselaar MH, Smit JW, Nagarajah J, et al. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol. 2017 Nov;59(4):R141–R154. PubMed PMID: 28931558. doi: 10.1530/JME-17-0134
  • Nagaiah G, Hossain A, Mooney CJ, et al. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol. 2011;2011:542358. PubMed PMID: 21772843; PubMed Central PMCID: PMCPMC3136148. doi: 10.1155/2011/542358
  • Jannin A, Escande A, Al Ghuzlan A, et al. Anaplastic thyroid carcinoma: an update. Cancers (Basel). 2022 Feb 19;14(4): 1061. PubMed PMID: 35205809; PubMed Central PMCID: PMCPMC8869821. doi: 10.3390/cancers14041061
  • Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017 Nov;13(11):644–660. PubMed PMID: 28707679. doi: 10.1038/nrendo.2017.76
  • Ratajczak M, Gawel D, Godlewska M. Novel inhibitor-based therapies for thyroid cancer—an update. Int J Mol Sci. 2021 Oct 31;22(21):11829. PubMed PMID: 34769260; PubMed Central PMCID: PMCPMC8584403. doi: 10.3390/ijms222111829
  • Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer. 2007 Dec;7(12):899–910. PubMed PMID: 18004397. doi: 10.1038/nrc2271
  • Palmieri D, Valentino T, D’Angelo D, et al. HMGA proteins promote ATM expression and enhance cancer cell resistance to genotoxic agents. Oncogene. 2011 Jul 7;30(27):3024–35. PubMed PMID: 21339738. doi: 10.1038/onc.2011.21
  • Palumbo A Jr., Da Costa NM, Esposito F, et al. HMGA2 overexpression plays a critical role in the progression of esophageal squamous carcinoma. Oncotarget. 2016 May 3;7(18):25872–84. PubMed PMID: 27027341; PubMed Central PMCID: PMCPMC5041951. doi: 10.18632/oncotarget.8288
  • De Martino M, Fusco A, Esposito F. HMGA and cancer: a review on patent literatures. Recent Pat Anticancer Drug Discov. 2019;14(3):258–267. PubMed PMID: 31538905. doi: 10.2174/1574892814666190919152001
  • De Martino M, Esposito F, Pellecchia S, et al. HMGA1-regulating microRnas let-7a and miR-26a are downregulated in human seminomas. Int J Mol Sci. 2020 Apr 24;21(8). PubMed PMID: 32344629; PubMed Central PMCID: PMCPMC7215726. doi: 10.3390/ijms21083014
  • Scala S, Portella G, Fedele M, et al. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc Natl Acad Sci USA. 2000 Apr 11;97(8):4256–61. PubMed PMID: 10759549; PubMed Central PMCID: PMCPMC18219. doi: 10.1073/pnas.070029997
  • Mansoori B, Mohammadi A, Shirjang S, et al. HMGI-C suppressing induces P53/caspase9 axis to regulate apoptosis in breast adenocarcinoma cells. Cell Cycle. 2016 Oct;15(19):2585–2592. PubMed PMID: 27245202; PubMed Central PMCID: PMCPMC5053549. doi: 10.1080/15384101.2016.1190892
  • Fujikane R, Komori K, Sekiguchi M, et al. Function of high-mobility group a proteins in the DNA damage signaling for the induction of apoptosis. Sci Rep. 2016 Aug 19;6(1):31714. PubMed PMID: 27538817; PubMed Central PMCID: PMCPMC4990841. doi: 10.1038/srep31714
  • Masudo K, Suganuma N, Nakayama H, et al. EZH2 overexpression as a useful prognostic marker for aggressive behaviour in thyroid cancer. Vivo. 2018 Jan-Feb;32(1):25–31. PubMed PMID: 29275295; PubMed Central PMCID: PMCPMC5892628. doi: 10.21873/invivo.11200
  • Ferrari KJ, Scelfo A, Jammula S, et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell. 2014 Jan 9;53(1):49–62. PubMed PMID: 24289921. doi: 10.1016/j.molcel.2013.10.030
  • Hojfeldt JW, Laugesen A, Willumsen BM, et al. Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat Struct Mol Biol. 2018 Mar;25(3):225–232. PubMed PMID: 29483650; PubMed Central PMCID: PMCPMC5842896. doi: 10.1038/s41594-018-0036-6
  • Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life. Nature. 2011 Jan 20;469(7330):343–9. PubMed PMID: 21248841; PubMed Central PMCID: PMCPMC3760771. doi: 10.1038/nature09784
  • Zhao X, Wu X. Polycomb-group proteins in the initiation and progression of cancer. J Genet Genomics. 2021 Jun 20;48(6):433–443. PubMed PMID: 34266781. doi: 10.1016/j.jgg.2021.03.013
  • Borbone E, Troncone G, Ferraro A, et al. Enhancer of zeste homolog 2 overexpression has a role in the development of anaplastic thyroid carcinomas. J Clin Endocrinol Metab. 2011 Apr;96(4):1029–38. PubMed PMID: 21289264. doi: 10.1210/jc.2010-1784
  • Esposito F, Tornincasa M, Pallante P, et al. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab. 2012 May;97(5):E710–8. PubMed PMID: 22399519. doi: 10.1210/jc.2011-3068
  • de Mello DC, Saito KC, Cristovao MM, et al. Modulation of EZH2 activity induces an antitumoral effect and cell redifferentiation in anaplastic thyroid cancer. Int J Mol Sci. 2023 Apr 26;24(9):7872. PubMed PMID: 37175580; PubMed Central PMCID: PMCPMC10178714. doi: 10.3390/ijms24097872
  • Pallante P, Battista S, Pierantoni GM, et al. Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol. 2014 Feb;10(2):88–101. PubMed PMID: 24247220. doi: 10.1038/nrendo.2013.223
  • Pellecchia S, Sepe R, Decaussin-Petrucci M, et al. The long non-coding RNA Prader Willi/Angelman Region RNA5 (PAR5) is downregulated in anaplastic thyroid carcinomas where it acts as a tumor suppressor by reducing EZH2 activity. Cancers (Basel). 2020 Jan 17;12(1):235. PubMed PMID: 31963578; PubMed Central PMCID: PMCPMC7017000. doi: 10.3390/cancers12010235
  • De Martino M, Nicolau-Neto P, Ribeiro Pinto LF, et al. HMGA1 induces EZH2 overexpression in human B-cell lymphomas. Am J Cancer Res. 2021;11(5):2174–2187. PubMed PMID: 34094676; PubMed Central PMCID: PMCPMC8167683
  • Esposito F, De Martino M, Petti MG, et al. HMGA1 pseudogenes as candidate proto-oncogenic competitive endogenous RNAs. Oncotarget. 2014 Sep 30;5(18):8341–54. PubMed PMID: 25268743; PubMed Central PMCID: PMCPMC4226687. doi: 10.18632/oncotarget.2202
  • D’Angelo D, Borbone E, Palmieri D, et al. The impairment of the High Mobility Group a (HMGA) protein function contributes to the anticancer activity of trabectedin. Eur J Cancer. 2013 Mar;49(5):1142–51. PubMed PMID: 23149213. doi: 10.1016/j.ejca.2012.10.014
  • Loria R, Laquintana V, Bon G, et al. HMGA1/E2F1 axis and NFkB pathways regulate LPS progression and trabectedin resistance. Oncogene. 2018 Nov;37(45):5926–5938. PubMed PMID: 29980789; PubMed Central PMCID: PMCPMC6224401. doi: 10.1038/s41388-018-0394-x
  • Chen YT, Zhu F, Lin WR, et al. The novel EZH2 inhibitor, GSK126, suppresses cell migration and angiogenesis via down-regulating VEGF-A. Cancer Chemother Pharmacol. 2016 Apr;77(4):757–65. PubMed PMID: 26898301. doi: 10.1007/s00280-016-2990-1
  • Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003 Sep;88(9):4393–7. PubMed PMID: 12970315. doi: 10.1210/jc.2003-030305
  • Landa I, Pozdeyev N, Korch C, et al. Comprehensive genetic characterization of human thyroid cancer cell lines: a validated panel for preclinical studies. Clin Cancer Res. 2019 May 15;25(10):3141–3151. PubMed PMID: 30737244; PubMed Central PMCID: PMCPMC6522280. doi: 10.1158/1078-0432.CCR-18-2953
  • Vicini E, Loiarro M, Di Agostino S, et al. 17-beta-estradiol elicits genomic and non-genomic responses in mouse male germ cells. J Cell Physiol. 2006 Jan;206(1):238–245. PubMed PMID: 15991248. doi: 10.1002/jcp.20454
  • Di Veroli GY, Fornari C, Wang D, et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics. 2016 Sep 15;32(18):2866–8. PubMed PMID: 27153664; PubMed Central PMCID: PMCPMC5018366. doi: 10.1093/bioinformatics/btw230
  • De Martino M, Palma G, Azzariti A, et al. The HMGA1 pseudogene 7 induces miR-483 and miR-675 upregulation by activating Egr1 through a ceRNA mechanism. Genes (Basel). 2017 Nov 17;8(11):330. PubMed PMID: 29149041; PubMed Central PMCID: PMCPMC5704243. doi: 10.3390/genes8110330
  • Sinisi AA, Chieffi P, Pasquali D, et al. EPN: a novel epithelial cell line derived from human prostate tissue. Vitro Cell Dev Biol Anim. 2002 Mar;38(3):165–172. PubMed PMID: 12026165. doi: 10.1290/1071-2690(2002)038<0165:EANECL>2.0.CO;2
  • Pero R, Lembo F, Chieffi P, et al. Translational regulation of a novel testis-specific RNF4 transcript. Mol Reprod Dev. 2003 Sep;66(1):1–7. PubMed PMID: 12874792. doi: 10.1002/mrd.10322
  • Tang J, Wennerberg K, Aittokallio T. What is synergy? The saariselka agreement revisited. Front Pharmacol. 2015;6:181. PubMed PMID: 26388771; PubMed Central PMCID: PMCPMC4555011: doi: 10.3389/fphar.2015.00181
  • Cao Q, Yu J, Dhanasekaran SM, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008 Dec 11;27(58):7274–84. PubMed PMID: 18806826; PubMed Central PMCID: PMCPMC2690514. doi: 10.1038/onc.2008.333
  • Fan T, Jiang S, Chung N, et al. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res. 2011 Apr;9(4):418–29. PubMed PMID: 21383005; PubMed Central PMCID: PMCPMC3078218. doi: 10.1158/1541-7786.MCR-10-0511
  • Manzanares I, Cuevas C, Garcia-Nieto R, et al. Advances in the chemistry and pharmacology of ecteinascidins, a promising new class of anti-cancer agents. Curr Med Chem Anticancer Agents. 2001 Nov;1(3):257–276. PubMed PMID: 12678757. doi: 10.2174/1568011013354561
  • Jimenez PC, Wilke DV, Branco PC, et al. Enriching cancer pharmacology with drugs of marine origin. Br J Pharmacol. 2020 Jan;177(1):3–27. PubMed PMID: 31621891; PubMed Central PMCID: PMCPMC6976878. doi: 10.1111/bph.14876
  • Grosso F, Jones RL, Demetri GD, et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol. 2007 Jul;8(7):595–602. PubMed PMID: 17586092. doi: 10.1016/S1470-2045(07)70175-4
  • Demetri GD, von Mehren M, Jones RL, et al. Efficacy and safety of Trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: results of a phase III randomized multicenter clinical trial. J Clin Oncol. 2016 Mar 10;34(8):786–93. PubMed PMID: 26371143; PubMed Central PMCID: PMCPMC5070559 online at www.jco.org. Author contributions are found at the end of this article. doi: 10.1200/JCO.2015.62.4734
  • Poveda A, Vergote I, Tjulandin S, et al. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer: outcomes in the partially platinum-sensitive (platinum-free interval 6-12 months) subpopulation of OVA-301 phase III randomized trial. Ann Oncol. 2011 Jan;22(1):39–48. PubMed PMID: 20643862; PubMed Central PMCID: PMCPMC3003616. doi: 10.1093/annonc/mdq352
  • Pignata S, Scambia G, Villanucci A, et al. A European, observational, prospective trial of trabectedin plus pegylated liposomal doxorubicin in patients with platinum-sensitive ovarian cancer. Oncology. 2021 Apr;26(4):e658–e668. PubMed PMID: 33289956; PubMed Central PMCID: PMCPMC8018301. doi: 10.1002/onco.13630
  • D’Incalci M, Galmarini CM. A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther. 2010 Aug;9(8):2157–63. PubMed PMID: 20647340. doi: 10.1158/1535-7163.MCT-10-0263
  • Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020 Jul 28;13(1):104. PubMed PMID: 32723346; PubMed Central PMCID: PMCPMC7385862. doi: 10.1186/s13045-020-00937-8
  • Miranda TB, Cortez CC, Yoo CB, et al. Dznep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 2009 Jun;8(6):1579–88. PubMed PMID: 19509260; PubMed Central PMCID: PMCPMC3186068. doi: 10.1158/1535-7163.MCT-09-0013
  • Nakayama H, Saito N, Kasajima R, et al. Validation of EZH2 inhibitor efficiency in anaplastic thyroid carcinoma cell lines. Anticancer Res. 2023 Mar;43(3):1073–1077. PubMed PMID: 36854530. doi: 10.21873/anticanres.16252
  • Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016 Feb;22(2):128–134. PubMed PMID: 26845405; PubMed Central PMCID: PMCPMC4918227. doi: 10.1038/nm.4036
  • McCabe MT, Ott HM, Ganji G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012 Dec 6;492(7427):108–12. PubMed PMID: 23051747. doi: 10.1038/nature11606
  • Zhang D, Yang XJ, Luo QD, et al. EZH2 enhances the invasive capability of renal cell carcinoma cells via activation of STAT3. Mol Med Rep. 2018 Mar;17(3):3621–3626. PubMed PMID: 29286132; PubMed Central PMCID: PMCPMC5802166. doi: 10.3892/mmr.2017.8363

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.