280
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of CSTF2 in cancer: from technology to clinical application

, , , , , , , & show all
Pages 2622-2636 | Received 17 Mar 2023, Accepted 20 Dec 2023, Published online: 02 Jan 2024

References

  • Ushijima T, Clark SJ, Tan P. Mapping genomic and epigenomic evolution in cancer ecosystems. Science. 2021 Sep 24;373(6562):1474–1479. doi: 10.1126/science.abh1645
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209–249. doi: 10.3322/caac.21660
  • Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018 Mar 23;359(6382):1355–1360
  • Yan L, Xu F, Dai CL. Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. J Exp Clin Cancer Res. 2018 Aug 29;37(1):203. doi: 10.1186/s13046-018-0887-z
  • Sun SN, Hu S, Shang YP, et al. Relevance function of microRNA-708 in the pathogenesis of cancer. Cell Signal. 2019 Nov;63:109390
  • Takagaki Y, MacDonald CC, Shenk T, et al. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs. Proc Natl Acad Sci USA. 1992 Feb 15;89(4):1403–7. doi: 10.1073/pnas.89.4.1403
  • Grozdanov PN, Masoumzadeh E, Kalscheuer VM, et al. A missense mutation in the CSTF2 gene that impairs the function of the RNA recognition motif and causes defects in 3’ end processing is associated with intellectual disability in humans. Nucleic Acids Res. 2020 Sep 25;48(17):9804–9821. doi: 10.1093/nar/gkaa689
  • Youngblood BA, MacDonald CC. CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects. Stem Cell Res. 2014 Nov;13(3 Pt A):413–421. doi: 10.1016/j.scr.2014.09.005
  • Takagaki Y, Seipelt RL, Peterson ML, et al. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell. 1996 Nov 29;87(5):941–52. doi: 10.1016/s0092-8674(00)82000-0
  • Chuvpilo S, Zimmer M, Kerstan A, et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity. 1999 Feb;10(2):261–9. doi: 10.1016/s1074-7613(00)80026-6
  • Masoumzadeh E, Grozdanov PN, Jetly A, et al. Electrostatic Interactions between CSTF2 and pre-mRNA drive cleavage and polyadenylation. Biophys J. 2022 Feb 15;121(4):607–619. doi: 10.1016/j.bpj.2022.01.005
  • Yan Q, Chen BJ, Hu S, et al. Emerging role of RNF2 in cancer: from bench to bedside. J Cell Physiol. 2021 Aug;236(8):5453–5465. doi: 10.1002/jcp.30260
  • Aragaki M, Takahashi K, Akiyama H, et al. Characterization of a cleavage stimulation factor, 3’ pre-RNA, subunit 2, 64 kDa (CSTF2) as a therapeutic target for lung cancer. Clin Cancer Res. 2011 Sep 15;17(18):5889–5900. doi: 10.1158/1078-0432.Ccr-11-0240
  • Chen X, Zhang JX, Luo JH, et al. CSTF2-induced shortening of the RAC1 3‘UTR promotes the pathogenesis of urothelial carcinoma of the bladder. Cancer Res. 2018 Oct 15;78(20):5848–5862. doi: 10.1158/0008-5472.Can-18-0822
  • Zhang MH, Liu J. Cleavage stimulation factor 2 promotes malignant progression of liver hepatocellular carcinoma by activating phosphatidylinositol 3’-kinase/protein kinase B/mammalian target of rapamycin pathway. Bioengineered. 2022 Apr;13(4):10047–10060. doi: 10.1080/21655979.2022.2063100
  • Akman HB, Oyken M, Tuncer T, et al. 3‘UTR shortening and EGF signaling: implications for breast cancer. Hum Mol Genet. 2015 Dec 15;24(24):6910–6920. doi: 10.1093/hmg/ddv391
  • Chen Y, Chen D, Wang Q, et al. Immunological classification of pancreatic carcinomas to identify immune index and provide a strategy for patient stratification. Front Immunol. 2021;12:719105. doi: 10.3389/fimmu.2021.719105
  • Lin A, Ji P, Niu X, et al. CstF64-induced shortening of the BID 3‘UTR promotes esophageal squamous cell carcinoma progression by disrupting ceRNA cross-talk with ZFP36L2. Cancer Res. 2021 Nov 15;81(22):5638–5651. doi: 10.1158/0008-5472.Can-21-1201
  • Gyamfi J, Kim J, Choi J. Cancer as a metabolic disorder. Int J Mol Sci. 2022 Jan 21;23(3):1155
  • Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet. 2014 Feb 8;383(9916):549–57
  • Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021 Mar 17;134(7):783–791. doi: 10.1097/cm9.0000000000001474
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–74. doi: 10.1016/j.cell.2011.02.013
  • Dancey JE, Bedard PL, Onetto N, et al. The genetic basis for cancer treatment decisions. Cell. 2012 Feb 3;148(3):409–20. doi: 10.1016/j.cell.2012.01.014
  • Lagergren P, Schandl A, Aaronson NK, et al. Cancer survivorship: an integral part of Europe’s research agenda. Mol Oncol. 2019 Mar;13(3):624–635. doi: 10.1002/1878-0261.12428
  • Tardif S, Akrofi AS, Dass B, et al. Infertility with impaired zona pellucida adhesion of spermatozoa from mice lacking TauCstF-64. Biol Reprod. 2010 Sep;83(3):464–72. doi: 10.1095/biolreprod.109.083238
  • Gruber AJ, Schmidt R, Gruber AR, et al. A comprehensive analysis of 3’ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 2016 Aug;26(8):1145–1159. doi: 10.1101/gr.202432.115
  • Salisbury J, Hutchison KW, Graber JH. A multispecies comparison of the metazoan 3’-processing downstream elements and the CstF-64 RNA recognition motif. BMC Genomics. 2006 Mar 16;7(1):55
  • Deka P, Rajan PK, Perez-Canadillas JM, et al. Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human cstf-64 protein. J Mol Biol. 2005 Apr 8;347(4):719–33. doi: 10.1016/j.jmb.2005.01.046
  • Connelly S, Manley JL. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes Dev. 1988 Apr;2(4):440–52. doi: 10.1101/gad.2.4.440
  • Zhang W, Wan Y, Zhang Y, et al. CSTF2 acts as a prognostic marker correlated with immune infiltration in hepatocellular carcinoma. Cancer Manag Res. 2022;14:2691–2709. doi: 10.2147/cmar.S359545
  • Wei Y, Luo H, Yee PP, et al. Paraspeckle protein NONO promotes TAZ phase separation in the nucleus to drive the oncogenic transcriptional program. Adv Sci. 2021 Dec;8(24):e2102653. doi: 10.1002/advs.202102653
  • Okada M, Cheeseman IM, Hori T, et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol. 2006 May;8(5):446–457. doi: 10.1038/ncb1396
  • Wang J, Liu X, Chu HJ, et al. Centromere protein I (CENP-I) is upregulated in gastric cancer, predicts poor prognosis, and promotes tumor cell proliferation and migration. Technol Cancer Res Treat. 2021 Jan-Dec;20:15330338211045510. doi: 10.1177/15330338211045510
  • Thangavelu PU, Lin CY, Vaidyanathan S, et al. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer. Oncotarget. 2017 Sep 22;8(37):62167–62182. doi: 10.18632/oncotarget.19131
  • Yu Q, Yin L, Jian Y, et al. Downregulation of PHF6 inhibits cell proliferation and migration in hepatocellular carcinoma. Cancer Biother Radiopharm. 2019 May;34(4):245–251. doi: 10.1089/cbr.2018.2671
  • Yu Q, Zhou J, Jian Y, et al. MicroRNA-214 suppresses cell proliferation and migration and cell metabolism by targeting PDK2 and PHF6 in hepatocellular carcinoma. Cell Biol Int. 2020 Jan;44(1):117–126. doi: 10.1002/cbin.11207
  • Zhang S, Zhang X, Lei W, et al. Genome-wide profiling reveals alternative polyadenylation of mRNA in human non-small cell lung cancer. J Transl Med. 2019 Aug 7;17(1):257. doi: 10.1186/s12967-019-1986-0
  • Zheng Y, Li X, Deng S, et al. CSTF2 mediated mRNA N(6)-methyladenosine modification drives pancreatic ductal adenocarcinoma m(6)A subtypes. Nat Commun. 2023 Oct 10;14(1):6334. doi: 10.1038/s41467-023-41861-y
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):7–33. doi: 10.3322/caac.21708
  • Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022 Sep;72(5):409–436. doi: 10.3322/caac.21731
  • Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med. 2020 Mar;41(1):1–24. doi: 10.1016/j.ccm.2019.10.001
  • Kikuchi T, Daigo Y, Ishikawa N, et al. Expression profiles of metastatic brain tumor from lung adenocarcinomas on cDNA microarray. Int J Oncol. 2006 Apr;28(4):799–805.
  • Kakiuchi S, Daigo Y, Tsunoda T, et al. Genome-wide analysis of organ-preferential metastasis of human small cell lung cancer in mice. Mol Cancer Res. 2003 May;1(7):485–99.
  • Kakiuchi S, Daigo Y, Ishikawa N, et al. Prediction of sensitivity of advanced non-small cell lung cancers to gefitinib (Iressa, ZD1839). Hum Mol Genet. 2004 Dec 15;13(24):3029–43. doi: 10.1093/hmg/ddh331
  • Taniwaki M, Daigo Y, Ishikawa N, et al. Gene expression profiles of small-cell lung cancers: molecular signatures of lung cancer. Int J Oncol. 2006 Sep;29(3):567–75.
  • Yeh HS, Yong J. Alternative Polyadenylation of mRNAs: 3’-Untranslated Region Matters in Gene Expression. Mol Cells. 2016 Apr 30;39(4):281–285. doi: 10.14348/molcells.2016.0035
  • Galsky MD, Pal SK, Lin SW, et al. Real-world effectiveness of chemotherapy in elderly patients with metastatic bladder cancer in the United States. Bladder Cancer. 2018 Apr 26;4(2):227–238. doi: 10.3233/blc-170149
  • Marei H, Malliri A. Rac1 in human diseases: the therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases. 2017 Jul 3;8(3):139–163. doi: 10.1080/21541248.2016.1211398
  • Volanis D, Zaravinos A, Kadiyska T, et al. Expression profile of Rho kinases in urinary bladder cancer. J Buon. 2011 Jul-Sep;16(3):511–21.
  • Liu L, Zhang H, Shi L, et al. Inhibition of Rac1 activity induces G1/S phase arrest through the GSK3/cyclin D1 pathway in human cancer cells. Oncol Rep. 2014 Oct;32(4):1395–400. doi: 10.3892/or.2014.3388
  • Zhang J, Wu N, Gao N, et al. Small G Rac1 is involved in replication cycle of dengue serotype 2 virus in EAhy926 cells via the regulation of actin cytoskeleton. Sci China Life Sci. 2016 May;59(5):487–94. doi: 10.1007/s11427-016-5042-5
  • Gilles H, Garbutt T, Landrum J. Hepatocellular Carcinoma. Crit Care Nurs Clin North Am. 2022 Sep;34(3):289–301. doi: 10.1016/j.cnc.2022.04.004
  • Galle PR, Forner A, Llovet JM. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018 Jul;69(1):182–236. doi: 10.1016/j.jhep.2018.03.019
  • Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, et al. Hepatocellular carcinoma: From diagnosis to treatment. Surg Oncol. 2016 Jun;25(2):74–85. doi: 10.1016/j.suronc.2016.03.002
  • Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019 Oct;16(10):589–604. doi: 10.1038/s41575-019-0186-y
  • Yin L, Duan JJ, Bian XW, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 Jun 9;22(1):61. doi: 10.1186/s13058-020-01296-5
  • Morris GJ, Naidu S, Topham AK, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and caucasian patients: a single-institution compilation compared with the national cancer institute’s surveillance, epidemiology, and end results database. Cancer. 2007 Aug 15;110(4):876–884. doi: 10.1002/cncr.22836
  • Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007 Aug 1;13(15 Pt 1):4429–4434. doi: 10.1158/1078-0432.Ccr-06-3045
  • Lin NU, Claus E, Sohl J, et al. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer. 2008 Nov 15;113(10):2638–45. doi: 10.1002/cncr.23930
  • Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015 Jun;12(2):106–16. doi: 10.7497/j.issn.2095-3941.2015.0030
  • Shell SA, Hesse C, Morris SM Jr., et al. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection. J Biol Chem. 2005 Dec 2;280(48):39950–61. doi: 10.1074/jbc.M508848200
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424. doi: 10.3322/caac.21492
  • Wood LD, Canto MI, Jaffee EM, et al. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022 Aug;163(2):386–402.e1. doi: 10.1053/j.gastro.2022.03.056
  • Lin DC, Dinh HQ, Xie JJ, et al. Identification of distinct mutational patterns and new driver genes in oesophageal squamous cell carcinomas and adenocarcinomas. Gut. 2018 Oct;67(10):1769–1779. doi: 10.1136/gutjnl-2017-314607
  • Neoptolemos JP, Kleeff J, Michl P, et al. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018 Jun;15(6):333–348. doi: 10.1038/s41575-018-0005-x
  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018 Mar 23;359(6382):1350–1355. doi: 10.1126/science.aar4060
  • Fakhry C, Zevallos JP, Eisele DW. Imbalance between clinical and pathologic staging in the updated American joint commission on cancer staging system for human papillomavirus-positive oropharyngeal cancer. J Clin Oncol. 2018 Jan 20;36(3):217–219. doi: 10.1200/jco.2017.75.2063
  • Icard P, Fournel L, Wu Z, et al. Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 2019 Jun;44(6):490–501. doi: 10.1016/j.tibs.2018.12.007
  • Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019 Dec;59:125–132. doi: 10.1016/j.semcancer.2019.07.009
  • Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020 Dec 4;13(1):165. doi: 10.1186/s13045-020-00990-3
  • Wang R, Sun Q, Wang P, et al. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget. 2016 Feb 2;7(5):5754–68. doi: 10.18632/oncotarget.6805
  • Feng J, Li J, Wu L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020 Jul 6;39(1):126. doi: 10.1186/s13046-020-01629-4
  • Lachenmayer A, Alsinet C, Chang CY, et al. Molecular approaches to treatment of hepatocellular carcinoma. Dig Liver Dis. 2010 Jul;42(Suppl 3):S264–72. (0 3). doi: 10.1016/s1590-8658(10)60515-4
  • Bortolotto LF, Barbosa FR, Silva G, et al. Cytotoxicity of trans-chalcone and licochalcone a against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed Pharmacother. 2017 Jan;85:425–433
  • He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021 Dec 16;6(1):425. doi: 10.1038/s41392-021-00828-5
  • Xue S, Zhou Y, Zhang J, et al. Anemoside B4 exerts anti-cancer effect by inducing apoptosis and autophagy through inhibiton of PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Am J Transl Res. 2019;11(4):2580–2589.
  • Condorelli DF, Privitera AP, Barresi V. Chromosomal density of cancer up-regulated genes, aberrant enhancer activity and cancer fitness genes are associated with transcriptional cis-effects of broad copy number gains in colorectal cancer. Int J Mol Sci. 2019 Sep 19;20(18):4652
  • Xia Z, Donehower LA, Cooper TA, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-UTR landscape across seven tumour types. Nat Commun. 2014 Nov 20;5(1):5274. doi: 10.1038/ncomms6274
  • Mao Z, Zhao H, Qin Y, et al. Post-transcriptional dysregulation of microRNA and alternative polyadenylation in colorectal cancer. Front Genet. 2020;11:64. doi: 10.3389/fgene.2020.00064
  • Wang M, Huang S, Chen Z, et al. Development and validation of an RNA binding protein-associated prognostic model for hepatocellular carcinoma. BMC Cancer. 2020 Nov 23;20(1):1136. doi: 10.1186/s12885-020-07625-3
  • Kari C, Chan TO, Rocha de Quadros M, et al. Targeting the epidermal growth factor receptor in cancer: apoptosis takes center stage. Cancer Res. 2003 Jan 1;63(1):1–5.
  • Daveri E, Adamo AM, Alfine E, et al. Hexameric procyanidins inhibit colorectal cancer cell growth through both redox and non-redox regulation of the epidermal growth factor signaling pathway. Redox Biol. 2021 Jan;38:101830
  • Seshacharyulu P, Ponnusamy MP, Haridas D, et al. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012 Jan;16(1):15–31. doi: 10.1517/14728222.2011.648617
  • Feng Y, Dai X, Li X, et al. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis. Cell Prolif. 2012 Oct;45(5):413–419. doi: 10.1111/j.1365-2184.2012.00837.x
  • Mayr C, Bartel DP. Widespread shortening of 3‘UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009 Aug 21;138(4):673–684. doi: 10.1016/j.cell.2009.06.016
  • Chen Z, Hao W, Tang J, et al. CSTF2 Promotes Hepatocarcinogenesis and Hepatocellular Carcinoma Progression via Aerobic Glycolysis. Front Oncol. 2022;12:897804. doi: 10.3389/fonc.2022.897804
  • Takahashi K, Furukawa C, Takano A, et al. The neuromedin U-growth hormone secretagogue receptor 1b/neurotensin receptor 1 oncogenic signaling pathway as a therapeutic target for lung cancer. Cancer Res. 2006 Oct 1;66(19):9408–19. doi: 10.1158/0008-5472.Can-06-1349
  • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013 Feb 15;339(6121):819–23. doi: 10.1126/science.1231143
  • Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014 Oct 9;159(2):440–55. doi: 10.1016/j.cell.2014.09.014
  • Sonoiki E, Ng CL, Lee MC, et al. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nat Commun. 2017 Mar 6;8(1):14574. doi: 10.1038/ncomms14574
  • Vivori C, Papasaikas P, Stadhouders R, et al. Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1. Genome Biol. 2021 Jun 3;22(1):171. doi: 10.1186/s13059-021-02372-5
  • Sun Y, Hamilton K, Tong L. Recent molecular insights into canonical pre-mRNA 3’-end processing. Transcription. 2020 Apr;11(2):83–96. doi: 10.1080/21541264.2020.1777047
  • Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015 Jan 29;517(7536):583–8. doi: 10.1038/nature14136
  • Zalatan JG, Lee ME, Almeida R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015 Jan 15;160(1–2):339–50. doi: 10.1016/j.cell.2014.11.052
  • Zeidler R, de Freitas Soares BL, Bader A, et al. Molecular epigenetic targets for liver diseases: current challenges and future prospects. Drug Discov Today. 2017 Nov;22(11):1620–1636. doi: 10.1016/j.drudis.2017.07.008
  • Li JY, Chen YP, Li YQ, et al. Chemotherapeutic and targeted agents can modulate the tumor microenvironment and increase the efficacy of immune checkpoint blockades. Mol Cancer. 2021 Feb 4;20(1):27. doi: 10.1186/s12943-021-01317-7
  • Nagaratnam N, Karunanayake EH, Tennekoon KH, et al. In silico characterization of a RNA binding protein of cattle filarial parasite Setaria digitata. Bioinformation. 2014;10(8):512–7. doi: 10.6026/97320630010512
  • Guo S, Deng CX. Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci. 2018;14(14):2083–2093. doi: 10.7150/ijbs.25720
  • Kudinov AE, Karanicolas J, Golemis EA, et al. Musashi RNA-Binding proteins as cancer drivers and novel therapeutic targets. Clin Cancer Res. 2017 May 1;23(9):2143–2153. doi: 10.1158/1078-0432.Ccr-16-2728
  • Qin H, Ni H, Liu Y, et al. RNA-binding proteins in tumor progression. J Hematol Oncol. 2020 Jul 11;13(1):90. doi: 10.1186/s13045-020-00927-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.