278
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Evaluation of differences in expression pattern of three isoforms of the transforming growth factor beta in patients with lumbosacral stenosis

ORCID Icon, , , , , , & show all
Pages 555-572 | Received 30 Jan 2024, Accepted 30 Mar 2024, Published online: 02 May 2024

References

  • Pope MH. Biomechanics of the lumbar spine. Ann Med. 1989;21(5):347–351. doi: 10.3109/07853898909149219
  • Stodolny J. Zespo\ly anatomiczno-czynnościowe kręgos\lupa, ich funkcja i znaczenie w mechanizmach powstawania i profilaktyce przeciążeń. Med Sport. 2000;12(113):12–16.
  • Wilke HJ, Volkheimer D. Chapter 4 – basic biomechanics of the lumbar spine. In: Galbusera F Wilke H, editors. Biomechanics of the spine. Academic Press; 2018. pp. 51–67. doi:10.1016/B978-0-12-812851-0.00004-5.
  • Citko A, Owsieniuk I. Wybrane choroby kręgos\lupa w praktyce lekarza rodzinnego. Gabinet Prywat. 2022;29(2):21–25.
  • Lee SY, Kim TH, Oh JK, et al. Lumbar stenosis: a recent update by review of literature. Asian Spine J. 2015;9(5):818. doi: 10.4184/asj.2015.9.5.818
  • Heo DH, Park DY, Hong HJ, et al. Indications, contraindications, and complications of biportal endoscopic decompressive surgery for the treatment of lumbar stenosis: a systematic review. World Neurosurg. 2022;168:411–420. doi: 10.1016/j.wneu.2022.09.023
  • Da Costa RC, De Decker S, Lewis MJ, et al. Diagnostic imaging in intervertebral disc disease. Front Vet Sci. 2020;7:588338. doi:10.3389/fvets.2020.588338
  • Rampersaud YR, Fisher C, Yee A, et al. Health-related quality of life following decompression compared to decompression and fusion for degenerative lumbar spondylolisthesis: a Canadian multicentre study. Can J Surg. 2014;57(4):E126.
  • Kleinstueck FS, Fekete TF, Mannion AF, et al. To fuse or not to fuse in lumbar degenerative spondylolisthesis: do baseline symptoms help provide the answer? Eur Spine J. 2012;21(2):268–275. doi:10.1007/s00586-011-1896-1. https://pubmed.ncbi.nlm.nih.gov/21786174/
  • Messiah S, Tharian AR, Candido KD, et al. Neurogenic claudication: a review of current understanding and treatment options. Curr Pain Headache Rep. 2019;23(5):1–8. doi: 10.1007/s11916-019-0769-x
  • Deer T, Sayed D, Michels J, et al. A review of lumbar spinal stenosis with intermittent neurogenic claudication: disease and diagnosis. Pain Med. 2019;20(Supplement_2):S32–S44. doi: 10.1093/pm/pnz161
  • Covaro A, Vilà-Canet G, De Frutos AG, et al. Management of degenerative lumbar spinal stenosis: an evidence-based review. EFORT Open Rev. 2016;1(7):267–274. doi: 10.1302/2058-5241.1.000030
  • Houle M, O’Shaughnessy J, Tétreau C, et al. Comparison of walking variations during treadmill walking test between neurogenic and vascular claudication: a crossover study. Chiropr Man Ther. 2021;29:1–11. doi: 10.1186/s12998-021-00382-5
  • Hossain P, Kokkinidis DG, Armstrong EJ. How to assess a claudication and when to intervene. Curr Cardiol Rep. 2019;21(11):1–12. doi: 10.1007/s11886-019-1227-4
  • Burgstaller JM, Porchet F, Steurer J, et al. Arguments for the choice of surgical treatments in patients with lumbar spinal stenosis – a systematic appraisal of randomized controlled trials. BMC Musculoskelet Disord. 2015;16(1):96. doi: 10.1186/s12891-015-0548-8
  • Lee BH, Moon SH, Suk KS, et al. Lumbar spinal stenosis: pathophysiology and treatment principle: a narrative review. Asian Spine J. 2020;14(5):682. doi: 10.31616/asj.2020.0472
  • Byvaltsev VA, Kalinin AA, Hernandez PA, et al. Molecular and genetic mechanisms of spinal stenosis formation: systematic review. Int J Mol Sci. 2022;23(21):13479. doi: 10.3390/ijms232113479
  • Larson C, Oronsky B, Carter CA, et al. TGF-beta: a master immune regulator. Expert Opin Ther Targets. 2020;24(5):427–438. doi: 10.1080/14728222.2020.1744568
  • Vander Ark A, Cao J, Li X. TGF-β receptors: In and beyond TGF-β signaling. Cell Signal. 2018;52:112–120. doi: 10.1016/j.cellsig.2018.09.002
  • Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules. 2020;10(3):487. doi: 10.3390/biom10030487
  • Habibi H, Suzuki A, Hayashi K, et al. Expression and function of fibroblast growth factor 1 in the hypertrophied ligamentum flavum of lumbar spinal stenosis. J Orthop Sci. 2022;27(2):299–307. doi: 10.1016/j.jos.2021.01.004
  • Yan L, Gao R, Liu Y, et al. The pathogenesis of ossification of the posterior longitudinal ligament. Aging Dis. 2017;8(5):570. doi: 10.14336/AD.2017.0201
  • Xiang Q, Zhao Y, Lin J, et al. Epigenetic modifications in spinal ligament aging. Ageing Res Rev. 2022;77:101598. doi: 10.1016/j.arr.2022.101598
  • Circular RNA Expression Profile in Patients with Lumbar Spin… : Spine. Accessed July 1, 2023. https://journals.lww.com/spinejournal/Abstract/2021/09010/Circular_RNA_Expression_Profile_in_Patients_with.5.aspx
  • Ustawa z Dnia 1 Lipca 2005 r. o Pobieraniu, Przechowywaniu i Przeszczepianiu Komórek, Tkanek i Narządów. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20051691411 (accessed on 9 February 2024)
  • Hennemann S, de Abreu MR. Degenerative lumbar spinal stenosis. Rev Bras Ortop. 2021;56(1):9–17. doi: 10.1055/s-0040-1712490
  • Wang YXJ, Káplár Z, Deng M, et al. Lumbar degenerative spondylolisthesis epidemiology: a systematic review with a focus on gender-specific and age-specific prevalence. J Orthop Transl. 2017;11:39–52. doi: 10.1016/j.jot.2016.11.001
  • Cytokines: From Clinical Significance to Quantification – Liu – 2021 – Advanced Science – Wiley Online Library. Accessed July 2, 2023. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202004433
  • Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNANYN. 2019;25(1):1–16. doi: 10.1261/rna.068692.118
  • Ye J, Yang S, Wei Z, et al. Incidence and risk factors for adjacent segment disease after transforaminal lumbar interbody fusion in patients with lumbar degenerative diseases. Int J Gen Med. 2021;14:8185–8192. doi: 10.2147/IJGM.S337298
  • Lau KKL, Samartzis D, To NSC, et al. Demographic, surgical, and radiographic risk factors for symptomatic adjacent segment disease after lumbar fusion: a systematic review and meta-analysis. JBJS. 2021;103(15):1438. doi: 10.2106/JBJS.20.00408
  • Lyu FJ, Cui H, Pan H, et al. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res. 2021;9(1):1–14. doi: 10.1038/s41413-020-00125-x
  • Khan AN, Jacobsen HE, Khan J, et al. Inflammatory biomarkers of low back pain and disc degeneration: a review. Ann N Y Acad Sci. 2017;1410(1):68–84. doi: 10.1111/nyas.13551
  • The signal pathways and treatment of cytokine storm in COVID-19 | Signal Transduction and Targeted Therapy. Accessed July 2, 2023. https://www.nature.com/articles/s41392-021-00679-0
  • Ni L, Zheng Y, Gong T, et al. Proinflammatory macrophages promote degenerative phenotypes in rat nucleus pulpous cells partly through ERK and JNK signaling. J Cell Physiol. 2019;234(5):5362–5371. doi: 10.1002/jcp.27507
  • Li W, Liu T, Wu L, et al. Blocking the function of inflammatory cytokines and mediators by using IL-10 and TGF-β: a potential biological immunotherapy for intervertebral disc degeneration in a beagle model. Int J Mol Sci. 2014;15(10):17270–17283. doi: 10.3390/ijms151017270
  • Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 2019;120(3):2782–2790. doi: 10.1002/jcb.27681
  • Guo Z, Su W, Zhou R, et al. Exosomal MATN3 of urine-derived stem cells ameliorates intervertebral disc degeneration by antisenescence effects and promotes NPC proliferation and ECM synthesis by activating TGF-β. Oxid Med Cell Longev. 2021;2021:1–18. doi: 10.1155/2021/5542241
  • Stich S, Möller A, Cabraja M, et al. Chemokine CCL25 induces migration and extracellular matrix production of anulus fibrosus-derived cells. Int J Mol Sci. 2018;19(8):2207. doi: 10.3390/ijms19082207
  • Hondke S, Cabraja M, Krüger JP, et al. Proliferation, migration, and ECM formation potential of human annulus fibrosus cells is independent of degeneration status. Cartilage. 2020;11(2):192–202. doi: 10.1177/1947603518764265
  • Cao YL, Duan Y, Zhu LX, et al. TGF-β1, in association with the increased expression of connective tissue growth factor, induce the hypertrophy of the ligamentum flavum through the p38 MAPK pathway. Int J Mol Med. 2016;38(2):391–398. doi: 10.3892/ijmm.2016.2631
  • Amudong A, Muheremu A, Abudourexiti T. Hypertrophy of the ligamentum flavum and expression of transforming growth factor beta. J Int Med Res. 2017;45(6):2036–2041. doi: 10.1177/0300060517711308
  • Leivonen SK, Lazaridis K, Decock J, et al. TGF-β-elicited induction of tissue inhibitor of metalloproteinases (TIMP)-3 expression in fibroblasts involves complex interplay between Smad3, p38α, and ERK1/2. PLOS ONE. 2013;8(2):e57474. doi: 10.1371/journal.pone.0057474
  • Jens M, Rajewsky N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet. 2015;16(2):113–126. doi: 10.1038/nrg3853
  • Wang C, Han B, Zhou R, et al. Real-time imaging of translation on single mRNA transcripts in live cells. Cell. 2016;165(4):990–1001. doi: 10.1016/j.cell.2016.04.040
  • Burt KG, Viola DC, Lisiewski LE, et al. An in vivo model of ligamentum flavum hypertrophy from early-stage inflammation to fibrosis. JOR Spine. 6(3):e1260. doi: 10.1002/jsp2.1260
  • Zhong ZM, Zha DS, Xiao WD, et al. Hypertrophy of ligamentum flavum in lumbar spine stenosis associated with the increased expression of connective tissue growth factor. J Orthop Res. 2011;29(10):1592–1597. doi: 10.1002/jor.21431
  • Saito T, Yokota K, Kobayakawa K, et al. Experimental Mouse Model of Lumbar ligamentum flavum Hypertrophy. PLOS ONE. 2017;12(1):e0169717. doi: 10.1371/journal.pone.0169717
  • Zhang Y, Chen J, Zhong ZM, et al. Is platelet-derived growth factor-BB expression proportional to fibrosis in the hypertrophied lumber ligamentum flavum? Spine (Phila Pa 1976). 2010;35(25): E1479–E1486. doi:10.1097/BRS.0b013e3181f3d2df. https://pubmed.ncbi.nlm.nih.gov/21102276/
  • Yabu A, Suzuki A, Hayashi K, et al. Periostin increased by mechanical stress upregulates interleukin-6 expression in the ligamentum flavum. Faseb J. 2023;37(2):e22726. doi: 10.1096/fj.202200917RR
  • Chen S, Liu S, Ma K, et al. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage. 2019;27(8):1109–1117. doi: 10.1016/j.joca.2019.05.005
  • Nakawaki M, Uchida K, Miyagi M, et al. Changes in nerve growth factor expression and macrophage phenotype following intervertebral disc injury in mice. J Orthop Res. 2019;37(8):1798–1804. doi: 10.1002/jor.24308
  • Bian Q, Jain A, Xu X, et al. Excessive activation of TGFβ by spinal instability causes vertebral endplate sclerosis. Sci Rep. 2016;6(1):1–10. doi: 10.1038/srep27093
  • Zhang GZ, Liu MQ, Chen HW, et al. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif. 2021;54(7):e13057.
  • Bian Q, Ma L, Jain A, et al. Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis. Bone Res. 2017;5(1):1–14. doi: 10.1038/boneres.2017.8
  • Kwon YJ, Lee JW, Moon EJ, et al. Anabolic effects of peniel 2000, a peptide that regulates TGF-β1 signaling on intervertebral disc degeneration. Spine. 2013;38(2):E49–E58. doi: 10.1097/BRS.0b013e31827aa896
  • Jensen M, Wippler J, Kleiner M, et al. Evaluation of RNAlater as a field-compatible preservation method for metaproteomic analyses of bacterium-animal symbioses. Microbiol Spectr. 2021;9(2):e0142921. doi: 10.1128/Spectrum.01429-21
  • Suhovskih AV, Kazanskaya GM, Volkov AM, et al. Suitability of RNALater solution as a tissue-preserving reagent for immunohistochemical analysis. Histochem Cell Biol. 2019;152(3):239–247. doi: 10.1007/s00418-019-01799-z
  • Xiaogang M, Quanshan H, Liping Z, et al. The expression of cytokine and its significance for the intervertebral disks of Kazakhs. J Clin Lab Anal. 2017;31(5):e22087. doi: 10.1002/jcla.22087
  • Nakazawa KR, Walter BA, Laudier DM, et al. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. Spine J. 2018;18(2):343–356. doi: 10.1016/j.spinee.2017.09.018
  • Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650–665. doi: 10.1016/j.cell.2018.01.029
  • Cramer P. Organization and regulation of gene transcription. Nature. 2019;573(7772):45–54. doi: 10.1038/s41586-019-1517-4
  • Kornblihtt AR, Schor IE, Alló M, et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol. 2013;14(3):153–165. doi: 10.1038/nrm3525
  • Song P, Yang F, Jin H, et al. The regulation of protein translation and its implications for cancer. Signal Transduct Target Ther. 2021;6(1):1–9. doi: 10.1038/s41392-020-00444-9
  • Riba A, Di Nanni N, Mittal N, et al. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates. Proc Natl Acad Sci. 2019;116(30):15023–15032. doi: 10.1073/pnas.1817299116
  • Ye J, Xu M, Tian X, et al. Research advances in the detection of miRNA. J Pharm Anal. 2019;9(4):217–226. doi: 10.1016/j.jpha.2019.05.004
  • Guo L, Zhao Y, Yang S, et al. Integrative analysis of miRNA-mRNA and miRNA-miRNA interactions. Biomed Res Int. 2014;2014:e907420. doi: 10.1155/2014/907420
  • Janakiraman H, House RP, Gangaraju VK, et al. The long (lncRNA) and Short (miRNA) of it: TGFβ-mediated control of RNA-Binding proteins and noncoding RNAs. Mol Cancer Res MCR. 2018;16(4):567–579. doi: 10.1158/1541-7786.MCR-17-0547
  • Ding X, Park SI, McCauley LK, et al. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. Journal Of Biological Chemistry. 2013;288(15):10241–10253. doi: 10.1074/jbc.M112.443655
  • Ding X, Zhang J, Feng Z, et al. MiR-137-3p inhibits colorectal cancer cell migration by regulating a KDM1A-Dependent epithelial–mesenchymal transition. Dig Dis Sci. 2021;66(7):2272–2282. doi: 10.1007/s10620-020-06518-6
  • Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182(2):220–229. doi: 10.1164/rccm.200911-1698OC
  • Fils-Aimé N, Dai M, Guo J, et al. MicroRNA-584 and the protein phosphatase and actin regulator 1 (PHACTR1), a new signaling route through which transforming growth factor-β mediates the migration and actin dynamics of breast cancer cells. J Biol Chem. 2013;288(17):11807–11823. doi: 10.1074/jbc.M112.430934
  • Davis BN, Hilyard AC, Nguyen PH, et al. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010;39(3):373–384. doi: 10.1016/j.molcel.2010.07.011
  • Davis BN, Hilyard AC, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454(7200):56–61. doi: 10.1038/nature07086
  • Goswami B, Ahuja D, Pastré D, et al. p53 and HuR combinatorially control the biphasic dynamics of microRNA-125b in response to genotoxic stress. Commun Biol. 2023;6(1):110. doi: 10.1038/s42003-023-04507-9
  • Garibaldi F, Falcone E, Trisciuoglio D, et al. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex. Oncogene. 2016;35(29):3760–3770. doi: 10.1038/onc.2016.51
  • Butz H, Rácz K, Hunyady L, et al. Crosstalk between TGF-β signaling and the microRNA machinery. Trends Pharmacol Sci. 2012;33(7):382–393. doi: 10.1016/j.tips.2012.04.003
  • Han X, Yan S, Weijie Z, et al. Critical role of miR-10b in transforming growth factor-β1-induced epithelial-mesenchymal transition in breast cancer. Cancer Gene Ther. 2014;21(2):60–67.
  • Chung ACK, Huang XR, Meng X, et al. miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol JASN. 2010;21(8):1317–1325. doi: 10.1681/ASN.2010020134
  • Braun J, Hoang-Vu C, Dralle H, et al. Downregulation of microRnas directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene. 2010;29(29):4237–4244. doi: 10.1038/onc.2010.169
  • Gregory PA, Bracken CP, Smith E, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell. 2011;22(10):1686–1698.
  • Zhang B, Chen G, Yang X, et al. Dysregulation of MicroRNAs in hypertrophy and ossification of ligamentum flavum: new advances, challenges, and potential directions. Front Genet. 2021;12. [Accessed July 2, 2023]. doi: 10.3389/fgene.2021.641575
  • Xu YQ, Zhang ZH, Zheng YF, et al. MicroRNA-221 regulates hypertrophy of ligamentum flavum in lumbar spinal stenosis by targeting TIMP-2. Spine. 2016;41(4):275. doi: 10.1097/BRS.0000000000001226
  • Sun C, Zhang H, Wang X, et al. Ligamentum flavum fibrosis and hypertrophy: molecular pathways, cellular mechanisms, and future directions. Faseb J. 2020;34(8):9854–9868. doi: 10.1096/fj.202000635R
  • Wakefield LM, Winokur TS, Hollands RS, et al. Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest. 1990;86(6):1976–1984. doi: 10.1172/JCI114932
  • Heller GZ, Manuguerra M, Chow R. How to analyze the visual analogue scale: myths, truths and clinical relevance. Scand J Pain. 2016;13(1):67–75. doi: 10.1016/j.sjpain.2016.06.012
  • Thong ISK, Jensen MP, Miró J, et al. The validity of pain intensity measures: what do the NRS, VAS, VRS, and FPS-R measure? Scand J Pain. 2018;18(1):99–107. doi: 10.1515/sjpain-2018-0012
  • Karcioglu O, Topacoglu H, Dikme O, et al. A systematic review of the pain scales in adults: which to use? Am J Emerg Med. 2018;36(4):707–714. doi: 10.1016/j.ajem.2018.01.008
  • Yang H, Cao C, Wu C, et al. TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration. Sci Rep. 2015;5(1):13254. doi: 10.1038/srep13254
  • Yang H, Yuan C, Wu C, et al. The role of TGF‐β1/Smad2/3 pathway in platelet‐rich plasma in retarding intervertebral disc degeneration. J Cell Mol Med. 2016;20(8):1542–1549.