176
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

UHRF2 accumulates in early G1-phase after serum stimulation or mitotic exit to extend G1 and total cell cycle length

, , &
Pages 613-627 | Received 03 Apr 2023, Accepted 06 May 2024, Published online: 16 May 2024

References

  • Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88. doi: 10.1038/s41580-021-00404-3
  • Unoki M, Sasaki H. The UHRF protein family in epigenetics, development, and carcinogenesis. Proc Jpn Acad Ser B Phys Biol Sci. 2022;98:401–415. doi: 10.2183/pjab.98.021
  • Luo T, Cui S, Bian C, et al. Uhrf2 is important for DNA damage response in vascular smooth muscle cells. Biochem Biophys Res Commun. 2013;441(1):65–70. doi: 10.1016/j.bbrc.2013.10.018
  • Mahmood N, Rabbani SA. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front Oncol. 2019;9:489. doi: 10.3389/fonc.2019.00489
  • Ginnard SM, Winkler AE, Mellado Fritz C, et al. Molecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator UHRF2. Proteins. 2022;90(3):835–847. doi: 10.1002/prot.26278
  • Bronner C, Achour M, Arima Y, et al. The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther. 2007;115(3):419–434. doi: 10.1016/j.pharmthera.2007.06.003
  • Mousli M, Hopfner R, Abbady AQ, et al. ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells. Br J Cancer. 2003;89(1):120–127. doi: 10.1038/sj.bjc.6601068
  • Unoki M, Nishidate T, Nakamura Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene. 2004;23(46):7601–7610. doi: 10.1038/sj.onc.1208053
  • Hallstrom TC, Mori S, Nevins JR. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell. 2008;13(1):11–22. doi: 10.1016/j.ccr.2007.11.031
  • Pichler G, Wolf P, Schmidt CS, et al. Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. J Cell Biochem. 2011;112(9):2585–2593. doi: 10.1002/jcb.23185
  • Zhang J, Gao Q, Li P, et al. S phase-dependent interaction with DNMT1 dictates the role of UHRF1 but not UHRF2 in DNA methylation maintenance. Cell Res. 2011;21(12):1723–1739. doi: 10.1038/cr.2011.176
  • Liu X, Xu B, Yang J, et al. UHRF2 commissions the completion of DNA demethylation through allosteric activation by 5hmC and K33-linked ubiquitination of XRCC1. Mol Cell. 2021;81(14):2960–2974.e2967. doi: 10.1016/j.molcel.2021.05.022
  • Mori T, Li Y, Hata H, et al. NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun. 2002;296(3):530–536. doi: 10.1016/S0006-291X(02)00890-2
  • Li Y, Mori T, Hata H, et al. NIRF induces G1 arrest and associates with Cdk2. Biochem Biophys Res Commun. 2004;319(2):464–468. doi: 10.1016/j.bbrc.2004.04.190
  • Mori T, Li Y, Hata H, et al. NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett. 2004;557(1–3):209–214. doi: 10.1016/S0014-5793(03)01495-9
  • Mori T, Ikeda DD, Fukushima T, et al. NIRF constitutes a nodal point in the cell cycle network and is a candidate tumor suppressor. Cell Cycle. 2011;10(19):3284–3299. doi: 10.4161/cc.10.19.17176
  • Lu H, Hallstrom TC. The nuclear protein UHRF2 is a direct target of the transcription factor E2F1 in the induction of apoptosis. J Biol Chem. 2013;288(33):23833–23843. doi: 10.1074/jbc.M112.447276
  • Franks JL, Martinez-Chacin RC, Wang X, et al. In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLOS Biol. 2020;18(12):e3000975. doi: 10.1371/journal.pbio.3000975
  • Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–2308. doi: 10.1038/nprot.2013.143
  • Brinkman EK, Chen T, Amendola M, et al. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42(22):e168. doi: 10.1093/nar/gku936
  • Vesuna F, Winnard P Jr., Raman V. Enhanced green fluorescent protein as an alternative control reporter to Renilla luciferase. Anal Biochem. 2005;342(2):345–347. doi: 10.1016/j.ab.2005.04.047
  • Lu H, Liang X, Issaenko OA, et al. Jab1/CSN5 mediates E2F dependent expression of mitotic and apoptotic but not DNA replication targets. Cell Cycle. 2011;10(19):1–10. doi: 10.4161/cc.10.19.17618
  • Xie C, Freeman MJ, Lu H, et al. Retinoblastoma cells activate the AKT pathway and are vulnerable to the PI3K/mTOR inhibitor NVP-BEZ235. Oncotarget. 2017;8(24):38084–38098. doi: 10.18632/oncotarget.16970
  • Pineda G, Lennon KM, Delos Santos NP, et al. Tracking of normal and malignant progenitor cell cycle transit in a defined niche. Sci Rep. 2016;6(1):23885. doi: 10.1038/srep23885
  • Lu H, Hallstrom TC, Tsuji Y. Sensitivity to TOP2 targeting chemotherapeutics is regulated by Oct1 and FILIP1L. PLOS One. 2012;7(8):e42921. doi: 10.1371/journal.pone.0042921
  • Filtz EA, Emery A, Lu H, et al. Rb1 and Pten Co-Deletion in osteoblast precursor cells causes rapid lipoma formation in mice. PLoS One. 2015;10(8):e0136729. doi: 10.1371/journal.pone.0136729
  • Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–622. doi: 10.1373/clinchem.2008.112797
  • Bustin SA, Wittwer CT. MIQE: a step toward more robust and reproducible quantitative PCR. Clin Chem. 2017;63(9):1537–1538. doi: 10.1373/clinchem.2016.268953
  • Li L, Duan Q, Zeng Z, et al. UHRF2 promotes intestinal tumorigenesis through stabilization of TCF4 mediated Wnt/β-catenin signaling. Int J Cancer. 2020;147(8):2239–2252. doi: 10.1002/ijc.33036
  • Ubersax JA, Woodbury EL, Quang PN, et al. Targets of the cyclin-dependent kinase Cdk1. Nature. 2003;425(6960):859–864. doi: 10.1038/nature02062
  • Ma H, Chen H, Guo X, et al. M phase phosphorylation of the epigenetic regulator UHRF1 regulates its physical association with the deubiquitylase USP7 and stability. Proc Natl Acad Sci USA. 2012;109(13):4828–4833. doi: 10.1073/pnas.1116349109
  • Vassilev LT. Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle. 2006;5(22):2555–2556. doi: 10.4161/cc.5.22.3463
  • Carrano AC, Eytan E, Hershko A, et al. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999;1(4):193–199. doi: 10.1038/12013
  • Hopfner R, Mousli M, Oudet P, et al. Overexpression of ICBP90, a novel CCAAT-binding protein, overcomes cell contact inhibition by forcing topoisomerase II alpha expression. Anticancer Res. 2002;22(6A):3165–3170.
  • Tien AL, Senbanerjee S, Kulkarni A, et al. UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochem J. 2011;435(1):175–185. doi: 10.1042/BJ20100840
  • Polepalli S, George SM, Valli Sri Vidya R, et al. Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain. Int J Biochem Cell Biol. 2019;114:105558. doi: 10.1016/j.biocel.2019.06.006
  • Wu SC, Kim A, Gu Y, et al. UHRF1 overexpression promotes osteosarcoma metastasis through altered exosome production and AMPK/SEMA3E suppression. Oncogenesis. 2022;11(1):51. doi: 10.1038/s41389-022-00430-6
  • Sun J, Wu K, Chen S, et al. UHRF2 promotes hepatocellular carcinoma progression by upregulating ErbB3/Ras/Raf signaling pathway. Int J Med Sci. 2021;18(14):3097–3105. doi: 10.7150/ijms.60030
  • Wu K, Zhang Y, Liu Y, et al. Phosphorylation of UHRF2 affects malignant phenotypes of HCC and HBV replication by blocking DHX9 ubiquitylation. Cell Death Discov. 2023;9(1):27. doi: 10.1038/s41420-023-01323-2
  • Zhang Y, Wu K, Liu Y, et al. UHRF2 promotes the malignancy of hepatocellular carcinoma by PARP1 mediated autophagy. Cell Signal. 2023;109:110782. doi: 10.1016/j.cellsig.2023.110782
  • Wu TF, Zhang W, Su ZP, et al. UHRF2 mRNA expression is low in malignant glioma but silencing inhibits the growth of U251 glioma cells in vitro. Asian Pac J Cancer Prev. 2012;13(10):5137–5142. doi: 10.7314/APJCP.2012.13.10.5137
  • Jin C, Xiong D, Li HR, et al. Loss of UHRF2 is associated with non-small cell lung carcinoma progression. J Cancer. 2018;9(17):2994–3005. doi: 10.7150/jca.25876
  • Lu H, Bhoopatiraju S, Wang H, et al. Loss of UHRF2 expression is associated with human neoplasia, promoter hypermethylation, decreased 5-hydroxymethylcytosine, and high proliferative activity. Oncotarget. 2016;7(46):76047–76061. doi: 10.18632/oncotarget.12583
  • Wang X, Sarver AL, Han Q, et al. UHRF2 regulates cell cycle, epigenetics and gene expression to control the timing of retinal progenitor and ganglion cell differentiation. Development. 2022;149(6). doi: 10.1242/dev.195644
  • Sano T, Ueda K, Minakawa K, et al. Impaired repopulating ability of Uhrf2−/− hematopoietic progenitor cells in mice. Genes (Basel). 2023;14(8):1531. doi: 10.3390/genes14081531
  • Slabber CF, Bachofner M, Speicher T, et al. The ubiquitin ligase Uhrf2 is a master regulator of cholesterol biosynthesis and is essential for liver regeneration. Sci Signal. 2023;16(787):eade8029. doi: 10.1126/scisignal.ade8029
  • Cheng F, Qian G, Fang X, et al. Hbx promotes hepatocarcinogenesis by enhancing phosphorylation and blocking ubiquitinylation of UHRF2. Hepatol Int. 2021;15(3):707–719. doi: 10.1007/s12072-021-10172-z
  • Sanchez-Fernandez C, Lorda-Diez CI, García-Porrero JA, et al. UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb. Cell Death Dis. 2019;10(5):347. doi: 10.1038/s41419-019-1575-4
  • Iguchi T, Ueda M, Masuda T, et al. Identification of UHRF2 as a negative regulator of epithelial-mesenchymal transition and its clinical significance in esophageal squamous cell carcinoma. Oncology. 2018;95(3):179–187. doi: 10.1159/000488860
  • Wu J, Liu S, Liu G, et al. Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene. 2012;31(3):333–341. doi: 10.1038/onc.2011.227
  • Arita K, Ariyoshi M, Tochio H, et al. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature. 2008;455(7214):818–821. doi: 10.1038/nature07249
  • Avvakumov GV, Walker JR, Xue S, et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature. 2008;455(7214):822–825. doi: 10.1038/nature07273
  • Hashimoto H, Horton JR, Zhang X, et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature. 2008;455(7214):826–829. doi: 10.1038/nature07280
  • Vaughan RM, Dickson BM, Cornett EM, et al. Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance. Nucleic Acids Res. 2018;46(9):4405–4416. doi: 10.1093/nar/gky151

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.