71
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Pumilio RNA binding family member 1 deficiency activates anti-tumor immunity in hepatocellular carcinoma via restraining M2 macrophage polarization

, , , &
Pages 682-692 | Received 29 Aug 2023, Accepted 13 May 2024, Published online: 24 May 2024

References

  • Xiao Y, Yang K, Liu P, et al. Deoxyribonuclease 1-like 3 inhibits hepatocellular carcinoma progression by inducing apoptosis and reprogramming glucose metabolism. Int J Biol Sci. 2022 Jan 1;18(1):82–95. doi: 10.7150/ijbs.57919
  • You Y, Wen D, Zeng L, et al. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression. Int J Biol Sci. 2022 Aug 1;18(13):5001–5018. doi: 10.7150/ijbs.70149
  • Jin H, Qin S, He J, et al. New insights into checkpoint inhibitor immunotherapy and its combined therapies in hepatocellular carcinoma: from mechanisms to clinical trials. Int J Biol Sci. 2022 Mar 28;18(7):2775–2794. doi: 10.7150/ijbs.70691
  • Zhao Y, Guo S, Deng J, et al. VEGF/VEGFR-Targeted therapy and immunotherapy in non-small cell Lung Cancer: targeting the tumor microenvironment. Int J Biol Sci. 2022 May 29;18(9):3845–3858. doi: 10.7150/ijbs.70958
  • Mo S, Shen X, Wang Y, et al. Systematic single-cell dissecting reveals heterogeneous oncofetal reprogramming in the tumor microenvironment of gastric cancer. Hum Cell. 2023 Mar;36(2):689–701. doi: 10.1007/s13577-023-00856-z
  • Zhang Z, Liang Z, Li D, et al. Development of a CAFs-related gene signature to predict survival and drug response in bladder cancer. Hum Cell. 2022 Mar;35(2):649–664. doi: 10.1007/s13577-022-00673-w
  • Katsuta E, Rashid OM, Takabe K. Clinical relevance of tumor microenvironment: immune cells, vessels, and mouse models. Hum Cell. 2020 Oct;33(4):930–937. doi: 10.1007/s13577-020-00380-4
  • Tsukamoto H, Komohara Y, Oshiumi H. The role of macrophages in anti-tumor immune responses: pathological significance and potential as therapeutic targets. Hum Cell. 2021 Jul;34(4):1031–1039. doi: 10.1007/s13577-021-00514-2
  • Kai K, Komohara Y, Esumi S, et al. Macrophage/microglia-derived IL-1β induces glioblastoma growth via the STAT3/NF-κB pathway. Hum Cell. 2022 Jan;35(1):226–237. doi: 10.1007/s13577-021-00619-8
  • Morito S, Kawasaki M, Nishiyama M, et al. Microenvironmental elements singularity synergistically regulate the behavior and chemosensitivity of endometrioid carcinoma. Hum Cell. 2023 May;36(3):1147–1159. doi: 10.1007/s13577-023-00886-7
  • Kersten K, Hu KH, Combes AJ, et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell. 2022 Jun 13;40(6):624–638.e9. doi: 10.1016/j.ccell.2022.05.004
  • Kloosterman DJ, Akkari L. Macrophages at the interface of the co-evolving cancer ecosystem. Cell. 2023 Apr 13;186(8):1627–1651. doi: 10.1016/j.cell.2023.02.020
  • Wu G, Ma Z, Cheng Y, et al. Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol Cancer. 2018 Jan 31;17(1):20. doi: 10.1186/s12943-018-0769-1
  • Wu Y, Zhang S, Gong X, et al. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer. 2020 Feb 27;19(1):39. doi: 10.1186/s12943-020-01157-x
  • Yoon DS, Lee KM, Choi Y, et al. TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis. Cell Death Differ. 2022 Jul;29(7):1364–1378. doi: 10.1038/s41418-021-00925-6
  • Elagooz R, Dhara AR, Gott RM, et al. PUM1 mediates the posttranscriptional regulation of human fetal hemoglobin. Blood Adv. 2022 Dec 13;6(23):6016–6022. doi: 10.1182/bloodadvances.2021006730
  • Li X, Yang J, Chen X, et al. PUM1 represses CDKN1B translation and contributes to prostate cancer progression. J Biomed Res. 2021 Jul 16;35(5):371–382. doi: 10.7555/JBR.35.20210067
  • Wang Y, Sun L, Wang L, et al. PUM1 modulates trophoblast cell proliferation and migration through LRP6. Biochem Cell Biol. 2021 Dec;99(6):735–740. doi: 10.1139/bcb-2021-0044
  • Gor R, Sampath SS, Lazer LM, et al. RNA binding protein PUM1 promotes colon cancer cell proliferation and migration. Int j biol macromol. 2021 Mar 31;174:549–561. doi: 10.1016/j.ijbiomac.2021.01.154
  • Murillo Carrasco A, Acosta O, Ponce J, et al. PUM1 and RNase P genes as potential cell-free DNA markers in breast cancer. J Clin Lab Anal. 2021 Apr;35(4):e23720. doi: 10.1002/jcla.23720
  • Yang Y, Su X, Shen K, et al. PUM1 is upregulated by DNA methylation to suppress anti-tumor immunity and results in poor prognosis in pancreatic cancer. Transl Cancer Res. 2021 May;10(5):2153–2168. doi: 10.21037/tcr-20-3295
  • Liu Q, Xin C, Chen Y, et al. PUM1 is overexpressed in colon cancer cells with acquired resistance to cetuximab. Front Cell Dev Biol. 2021 Aug 10;9:696558. doi: 10.3389/fcell.2021.696558
  • Dong F, Qin X, Wang B, et al. ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res. 2021 Dec 1;81(23):5876–5888. doi: 10.1158/0008-5472.CAN-21-1456
  • Li H, Luo F, Jiang X, et al. CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype. J Immunother Cancer. 2022 Mar;10(3):e004029. doi: 10.1136/jitc-2021-004029
  • Lv B, Wang Y, Ma D, et al. Immunotherapy: reshape the tumor immune microenvironment. Front Immunol. 2022Jul 6;13:844142. doi: 10.3389/fimmu.2022.844142
  • Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021 Feb 5;20(1):28. doi: 10.1186/s12943-021-01316-8
  • Hinshaw DC, Shevde LA. The Tumor microenvironment innately modulates cancer progression. Cancer Res. 2019 Sep 15;79(18):4557–4566. doi: 10.1158/0008-5472.CAN-18-3962
  • Zhang Y, Mao Q, Xia Q, et al. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol. 2021 Oct 15;14(1):169. doi: 10.1186/s13045-021-01179-y
  • Ma G, Zhang Z, Li P, et al. Reprogramming of glutamine metabolism and its impact on immune response in the tumor microenvironment. Cell Commun Signal. 2022 Jul 27;20(1):114. doi: 10.1186/s12964-022-00909-0
  • Gao Z, Lei WI, Lee LTO. The role of neuropeptide-stimulated cAMP-EPACs signalling in cancer cells. Molecules. 2022 Jan 5;27(1):311. doi: 10.3390/molecules27010311
  • Lian J, Yue Y, Yu W, et al. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020 Nov 10;13(1):151. doi: 10.1186/s13045-020-00986-z
  • Kumar N, Prasad P, Jash E, et al. Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem. 2018 Oct;447(1–2):77–92. doi: 10.1007/s11010-018-3294-z
  • Desman G, Waintraub C, Zippin JH. Investigation of cAMP microdomains as a path to novel cancer diagnostics. Biochim Biophys Acta. 2014 Dec;1842(12 Pt B):2636–2645. doi: 10.1016/j.bbadis.2014.08.016
  • Martiniuk A, Silva M, Amylon M, et al. Camp programs for children with cancer and their families: review of research progress over the past decade. Pediatr Blood Cancer. 2014 May;61(5):778–787. doi: 10.1002/pbc.24912
  • Merkle D, Hoffmann R. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: cross-talk with the androgen receptor. Cell Signal. 2011 Mar;23(3):507–515. doi: 10.1016/j.cellsig.2010.08.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.