3,009
Views
15
CrossRef citations to date
0
Altmetric
Articles

Functional decomposition—A contribution to overcome the parameter space explosion during validation of highly automated driving

ORCID Icon & ORCID Icon
Pages S52-S57 | Received 29 Oct 2018, Accepted 23 May 2019, Published online: 05 Aug 2019

References

  • Althoff M, Dolan JM. 2014. Online verification of automated road vehicles using reachability analysis. IEEE Trans Robot. 30(4):903–918.
  • Amersbach C, Winner H. 2017. Functional decomposition: An approach to reduce the approval effort for highly automated driving. Paper presented at: 8. Tagung Fahrerassistenz.
  • Bagschik G, Menzel T, Maurer M. 2018. Ontology based scene creation for the development of automated vehicles. Paper presented at: 2018 IEEE Intelligent Vehicles Symposium (IV).
  • Bagschik G, Stolte T, Maurer M. 2017. Safety analysis based on systems theory applied to an unmanned protective vehicle. Procedia Eng. 179:61–71.
  • Graab B, Donner E, Chiellino U, Hoppe M. 2008. Analyse von Verkehrsunfällen hinsichtlich unterschiedlicher Fahrerpopulationen und daraus ableitbarer Ergebnisse für die Entwicklung adaptiver Fahrerassistenzsysteme. In: TU München & TÜV Süd Akademie GmbH, eds. Conference: active safety through driver assistance. München. https://mediatum.ub.tum.de/doc/1145118/.
  • Grindal M, Offutt J, Andler SF. 2005. Combination testing strategies: a survey. Softw Test Verif Reliab. 15(3):167–199.
  • Gründl M. 2005. Fehler und Fehlverhalten als Ursache von Verkehrsunfällen und Konsequenzen für das Unfallvermeidungspotenzial und die Gestaltung von Fahrerassistenzsystemen. [PhD Dissertation]. Universität Regensburg.
  • International Organization for Standardization. 2019. ISO/PAS 21448:2019 Road vehicles–Safety of the intended functionality: International Organization for Standardization. https://www.iso.org/standard/70939.html.
  • Junietz P, Schneider J, Winner H. 2017. Metrik zur Bewertung der Kritikalität von Verkehrssituationen und - szenarien. Workshop Fahrerassistenz und automatisiertes Fahren.
  • Kalra N, Paddock SM. 2016. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? RAND Corporation. Research Report. doi: 10.7249/RR1478.
  • Kuhn DR, Wallace DR, Gallo AM. 2004. Software fault interactions and implications for software testing. IEEE Trans Softw Eng. 30(6):418–421.
  • Menzel T, Bagschik G, Maurer M. 2018. Scenarios for development, test and validation of automated vehicles. Paper presented at: 2018 IEEE Intelligent Vehicles Symposium (IV), p. 1821–1827.
  • NHTSA. 2019. Voluntary safety self-assessment. https://www.nhtsa.gov/automated-driving-systems/voluntary-safety-self-assessment.
  • Pütz A, Zlocki A, Bock J, Eckstein L. 2017. System validation of highly automated vehicles with a database of relevant traffic scenarios. Paper presented at: 12th ITS European Congress.
  • Reason J. 1990. The contribution of latent human failures to the breakdown of complex systems. Philos Trans R Soc Lond B Biol Sci. 327(1241):475–484.
  • Schuldt F. 2017. Ein Beitrag für den methodischen Test von automatisierten Fahrfunktionen mit Hilfe von virtuellen Umgebungen [Towards testing of automated driving functions in virtual driving environments]. [PhD Dissertation]. TU Braunschweig.
  • Society of Automotive Engineers. 2014. J3016: Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. SAE Standard J3016_201401, SAE International.
  • Sommerville I. Software engineering. New York: Addison-Wesley; 2006.
  • Wachenfeld W, Winner H. 2016. The release of autonomous vehicles. In: Winner H, Maurer M, Gerdes JC, Lenz B, editors. Autonomous driving: technical, legal and social aspects. Berlin: Springer. p. 425–449.
  • Waymo. 2017. On the road to fully self-driving: Waymo safety report. Waymo LLC. https://waymo.com/safety/.