7,205
Views
44
CrossRef citations to date
0
Altmetric
Articles

A framework for definition of logical scenarios for safety assurance of automated driving

, , , , , , & show all
Pages S65-S70 | Received 09 Nov 2018, Accepted 09 Jun 2019, Published online: 05 Aug 2019

References

  • Bach J, Otten S, Sax E. 2016. Model based scenario specification for development and test of automated driving functions. Paper presented at: IEEE Intelligent Vehicles Symposium (IV); June 19–22, Gothenburg, Sweden.
  • Bagschik G, Menzel T, Koerner C, Maurer M. 2018a. Wissensbasierte Szenariengenerierung für Betriebsszenarien auf deutschen Autobahnen. Paper presented at: Uni-DAS e.V. 12. Workshop Fahrerassistenzsysteme und automatisiertes Fahren; September 26–28, Walting, Germany.
  • Bagschik G, Menzel T, Maurer M. 2018b. Ontology based scene creation for the development of automated vehicles. Paper presented at: IEEE Intelligent Vehicles Symposium (IV); June 26–28, Changshu, Suzhou, China.
  • Bock J, Krajewski R, Eckstein L, Klimke J, Sauerbier J, Zlocki A. 2018. Data basis for scenario-based validation of HAD on highways. Paper presented at: 27th Aachen Colloquium Automobile and Engine Technology; October 8–10, Aachen, Germany.
  • Elrofai H, Paardekooper JP, de Gelder E, Kalisvaart S, Op den Camp O. 2018. StreetWise – Scenario-based safety validation of connected and automated driving. Helmond, Netherlands: TNO.
  • Fahrenkrog F. 2016. Wirksamkeitsanalyse von Fahrerassistenzsystemen in Bezug auf die Verkehrssicherheit. Aachen, Germany: Institut für Kraftfahrzeuge RWTH Aachen University;
  • Fahrenkrog F, Wang L, Roesener C, Sauerbier J, Breunig S. 2016. Deliverable D 7.3 – Impact assessment of automated driving. Wollfsburg, Germany: AdaptIVe IP.
  • Geyer S, Kienle M, Franz B, Winner H, Bengler K, Baltzer M, Flemisch F, Kauer M, Weißgerber T, Geyer S, et al. 2014. Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance. IET Intell Transp Syst. 8(3):183–189.
  • Kemper S, Etzien C. 2014. A visual logic for the description of highway traffic scenarios. In: Aiguier M, Boulanger F, Krob F, Marchal F, editors. Complex systems design & management. Vol. 26. Heidelberg, Germany: Springer International Publishing. p. 233–245.
  • Neumann B, Novak HJ. 1986. NOAS: Ein System zur natürlichsprachlichen Beschreibung zeitveränderlicher Szenen. Informatik Forschung und Entwicklung. 1:83–92.
  • NHTSA. 2016. 2015 FARS/NASS GES coding and validation manual. DOT HS 812 296. Washington DC: National Highway Traffic Safety Administration.
  • PEGASUS. 2018. Anforderungen & Rahmenbedingungen – Stand 4. Szenarienbeschreibung. [accessed 2019 Jan 21] https://www.pegasusprojekt.de/files/tmpl/PDF-HZE/04_Szenarienbeschreibung.pdf.
  • Puetz A, Zlocki A, Kuefen J, Bock J, Eckstein L. 2017. Database approach for the sign-off process of highly automated vehicles. Paper presented at: 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV): Innovations in Vehicle Safety: Opportunities and Challenges; June 5–7, Detroit, MI, USA.
  • Roesener C, Hennecke F, Sauerbier J, Zlocki A, Kemper D, Eckstein L, Oeser M. 2018. A traffic-based method for safety impact assessment of road vehicle automation. Paper presented at: Uni-DAS e.V. 12. Workshop Fahrerassistenzsysteme und automatisiertes Fahren; September 26–28, Walting, Germany.
  • Roesener C, Sauerbier J, Zlocki A, Fahrenkrog F, Wang L, Várhelyi A, de Gelder E, Breunig S, Tango F, Lanati J. 2017. A comprehensive evaluation approach for highly automated driving. Paper presented at: 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV): Innovations in Vehicle Safety: Opportunities and Challenges; June 5–7, 2017, Detroit, MI, USA.
  • SAE International. 2018. J3016 - surface vehicle recommended practice. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Warrendale, PA: SAE International.
  • Schuldt F. 2017. Ein Beitrag für den methodischen Test von automatisierten Fahrfunktionen mit Hilfe von virtuellen Umgebungen. Braunschweig: Universitätsbibliothek Braunschweig.
  • Wang W, Zhao D. 2018. Extracting traffic primitives directly from naturalistically logged data for self-driving applications. IEEE Robot Autom Lett. 3(2):1223–1229.
  • Wachenfeld W, Winner H. 2015. Die Freigabe des autonomen Fahrens. In Lenz B, Winner H, Gerdes JC, Maurer M editors. Autonomes Fahren: technische, rechtliche und gesellschaftliche Aspekte. Vol. 116. s.l. Heidelberg, Germany: Springer. p. 439–464.
  • Wachenfeld W, Junietz P, Wenzel R, Winner H. 2016. The worst-time-to-collision metric for situation identification. Paper presented at: IEEE Intelligent Vehicles Symposium (IV), June 19–22, Gothenburg, Sweden.
  • Winner H. 2015. Quo vadis, FAS? In: Winner H, Hakuli S, Lotz F, Singer S editors. Handbuch Fahrerassistenzsysteme. Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort. 3. überarb. und erg. Aufl. Heidelberg, Germany: Springer Vieweg (ATZ/MTZ-Fachbuch). p. 1167–1186.
  • Zlocki A, Roesener C, Klaudt S, Eckstein L. 2018. Ganzheitliche Werkzeugkette für die Entwicklung und Bewertung des automatisierten Fahrens. ATZ Extra. 23(S5):16–21.