300
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of pedestrian physique differences on head injury prediction in car-to-pedestrian accidents using deep learning

&
Pages S82-S86 | Received 01 Mar 2021, Accepted 13 Sep 2021, Published online: 26 Oct 2021

References

  • Augenstein J, Digges K, Perdeck E, Stratton J, Bahouth G, Baur P, Messner G. 2007. Application of ACN data to improve vehicle safety and occupant care. Enhanced Safety of Vehicles Conference. Lyon, France.
  • Euro NCAP. 2019. Technical Bulletin: Pedestrian Human Model Certification, TB 024, Version 2.0. [accessed 2021 Feb 8]. https://cdn.euroncap.com/media/56949/tb-024-pedestrian-human-model-certification-v20.pdf.
  • Fildes B, Gabler HC, Otte D, Linder A, Sparke L. 2004. Pedestrian impact priorities using real-world crash data and harm. International Research Council on the Biomechanics of Injury, September; Graz.
  • Ghildiyal A, Sharma S, Verma I, Marhatta U. 2020. Age and gender predictions using artificial intelligence algorithm. International Conference on Intelligent Sustainable Systems (ICISS). 371–375.
  • Ioffe S, Szegedy C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Machine learning. PMLR: 448–456.
  • JAPAN, I.F.T.A.R.A.D.A.O. 2006. Institute for Traffic Accident Research and Data Analysis of Japan. ITARDA Report.
  • Josten C, Siebert H, Ruchholtz S. 2012. Whitebook medical care of the severely injured. 2nd Revised and Updated ed. Berlin, Germany: German Society for Trauma Surgery.
  • Kramlich T, Langwieder K, Lang D, Hell W. 2002. Accident characteristics in car-to-pedestrian impacts. International Research Council on the Biomechanics of Injury, 119–130.
  • Kunitomi S, Konosu A. 2018. Prediction of head injury severity for pedestrians in car‐pedestrian accidents using deep learning methodology. International Research Council on the Biomechanics of Injury. Athens, Greece.
  • Lawrence S, Giles CL, Tsoi AC, Back AD. 1997. Face recognition: A convolutional neural-network approach. IEEE Trans Neural Netw. 8(1):98–113. doi:https://doi.org/10.1109/72.554195
  • Liu W, Duan A, Li K, Qiu J, Fu L, Jia H, Yin Z. 2020. Parameter sensitivity analysis of pedestrian head dynamic response and injuries based on coupling simulations. Sci Prog. 103(1):36850419892462.
  • MADYMO. 2017. Theory Manual 2017 Version7.7. TASS B.V. Rijswijk-The Netherlands.
  • Mariotti GV, Golfo S, Nigrelli V, Carollo F. 2019. Head injury criterion: Mini review. Am J Biomed Sci Res. 5(5):406–407. doi:https://doi.org/10.34297/AJBSR.2019.05.000957
  • Ministry of Land, Infrastructure, Transport and Tourism (MLIT). 2019. Japanese New Car Assessment Program. [accessed 2021 Feb 5] https://www8.cao.go.jp/koutu/kihon/keikaku11/public_comment/r02_1125.html.
  • Mizuno K, Kajzer J. 2000. Head injuries in vehicle-pedestrian impact. SAE Trans, 232–243.
  • Mizuno Y, Ishikawa H. 2005. Summary of IHRA Pedestrian Safety WG Activities 2005. Proposed test methods to evaluate pedestrian protection afforded by passenger cars. Proceedings of International Technical Conference on the Enhanced Safety of Vehicles.
  • Neal-Sturgess CE, Carter E, Hardy R, Cuerden R, Guerra L, Yang J. 2007. APROSYS European in-depth pedestrian database. 95.
  • Nishimoto T, Mukaigawa K, Tominaga S, Kiuch T. 2015. Development of AACN algorithm for pedestrian and cyclist. Trans Soc Automot Eng Japan. 46(6):1123–1129.
  • Peng Y, Chen Y, Yang J, Otte D, Willinger R. 2012. A study of pedestrian and bicyclist exposure to head injury in passenger car collisions based on accident data and simulations. Saf Sci. 50(9):1749–1759. doi:https://doi.org/10.1016/j.ssci.2012.03.005
  • Qian N. 1999. On the momentum term in gradient descent learning algorithms. Neural Netw. 12(1):145–151. doi:https://doi.org/10.1016/S0893-6080(98)00116-6
  • Ramachandran P, Zoph B, Le QV. 2017. Searching for activation functions. arXiv preprint arXiv:1710.05941.
  • Scherer D, Müller A, Behnke S. 2010. Evaluation of pooling operations in convolutional architectures for object recognition. International Conference on Artificial Neural Networks. p. 92–101.
  • Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
  • Sony. Neural Network Console version 1.7.0. 2020. [accessed 2021 Feb 8] https://dl.sony.com/.
  • Versace JA. Review of the severity index. SAE Technical Paper. 1971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.