138
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Electrokinetic Study and Surface Conductance of Carbon Nanotubes in Liquid Crystal Medium

, , &
Pages 284-289 | Received 20 Jan 2014, Accepted 03 Mar 2014, Published online: 23 Apr 2014

References

  • Mayer, H. (1997) Electrorotation of colloidal particles and cells depends on surface charge. Biophys J., 73:1617–1626.
  • Baughman, R.H., Zakhidov, A.A., and Heer, W.A. (2002) Carbon nanotubes—the route toward applications. Science, 297:787–792.
  • Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng S., Cho, K., and Dai H. (2000) Nanotube molecular wires as chemical sensors. Science, 287:622–625.
  • Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., and Ruoff, R.S. (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287:637–640.
  • Bert, T., Smet, H.D., Beunis F, and Neyts, K. (2006) Complete electrical and optical simulation of electronic paper. Displays, 27:50–55.
  • Comiskey, B., Albert, J.D., Yoshizawa, H. (1998) An electrophoretic ink for all-printed reflective electronic displays. Nature 394:253–255.
  • Ramos, A., Morgan, H., Greean, N.G., and Castellanous, A. (1998) AC electrokinetics: A review of forces in microelctrode structures. J. Phys. D, 31:2338–2353.
  • Fukuda J., and Žumer, S. (2009) Confinement effect on the interaction between colloidal particles in a nematic liquid crystal: An analytical study. Phys. Rev. E, 79:041703.
  • Fukuda, J., Stark, H., Yoneya, M., and Yokoyama, H. (2004) Interaction between two spherical particles in a nematic liquid crystal. Phys. Rev. E, 69: 041706.
  • Liao, G., Smalyukh, I.I., and Kelly, J.R., Laverentovich, O.D., and Jakli, A. (2005) Electrorotation of colloidal particles in liquid crystals. Phys. Rev. E, 72: 031704.
  • Jakli, A., Senyuk, B., Liao, G., and Lavrentovich O.D. (2008) Colloidal micromotor in Smectic A liquid crystal driven by DC electric field. Soft Matter, 4:2471–2474.
  • Lavrentovich, O.D., Lazo, I., and Pishnyak, O.P. (2010) Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal. Nature, 467:947–950.
  • Lazo, I., and Lavrentovich, O.D. (2013) Liquid-crystal-enabled electrophoresis of spheres in a nematic medium with negative dielectric anisotropy. Philos. Trans. R. Soc. A, 371:20120255.
  • Ryzhkova, A.V., Podgornov F.V., and Haase W. (2010) Nonlinear electrophoretic motion of dielectric microparticles in nematic liquid crystals. Appl. Phys. Lett., 96:151901.
  • Ryzhkova, A.V., Podgornov, F.V., Gaebler, A., Jakoby, R., and Haase, W. (2013) Measurements of the electrokinetic forces on dielectric microparticles in nematic liquid crystals using optical trapping. J. Appl. Phys., 113:244902.
  • Pishnyak, O.L., Shiyanoskii, S.V., and Lavrenthovich O.D. (2011) Inelastic collision and anisotropic aggregation of particle in a nematic collider driven by backflow. Phys. Rev. Lett., 106: 047801.
  • Dierking, I., Biddulph, G., and Matthews, K. (2006) Electromigration of microspheres in nematic liquid crystals. Phys. Rev. E, 73:011702.
  • Srivastava, A.K., Kim, M., Kim, S.H., Kim, M.K., Lee, K., Lee, Y.H., Lee, M.H., Lee, S.H., and Lee, Y.H. (2009) Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium. Phys. Rev. E, 80:051702.
  • Bert, T., and Smet, H.D. (2003) The microscopic physics of electronic paper revealed. Displays, 24:103–123.
  • Bert, T., and Smet, H.D. (2003) Dielectrophoresis in electronic paper. Displays, 24:223–250.
  • Jeon, S.Y., Park, K.A., Baik, I.S., Jeong, S.J., Jeong, S.H., An, K.H., Lee, S.H., and Lee, Y.H. (2007) Dynamic response of carbon nanotubes dispersed in nematic liquid crystal. Nano, 2:41–44.
  • Baik, I.S., Lee, J.Y., Jeon, S.Y., An, K.H., Choi, J.W., Lee, S.H., and Lee, Y.H. (2005) Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell. Appl. Phys. Lett., 87: 263110.
  • Egorova, E.M. (1994) The validity of the Smoluchwski equation in electrophoretic studies of lipid membranes. Electrophoresis, 15:1125–1131.
  • Attard, P, Antelmi, D., and Larson, I. (2000) Comparison of the zeta potential with the diffuse layer potential from charge titration. Langmuir, 16:1542–1552.
  • Sureshkumar, P., Srivastava, A.K., Jeong, S.J., Kim, M., Jo, E.M., Lee, S.H., and Lee, Y.H. (2009) Anomalous electrokinetic dispersion of carbon nanotube clusters in liquid crystal under electric field. J. NanoSci. Nanotech., 9:4741–4746.
  • Jones, T.B. (1984) Basic theory of dielectrophoresis and electrorotation. IEEE Eng. Med. Biol. Mag., 22(6):33–42.
  • Li Y.H., and Lue, J.T. (2007) Dielectric constant of single-wall carbon Nanotubes at various frequencies. Nanosci. Nanotechnol., 7:1–4.
  • Shilov, V., Barany, S., Grosse C., and Shramko, O. (2003) Field-induced disturbance of the double layer electro-neutrality and non-linear electrophoresis. Adv. Colloid Interface Sci., 104:159–173.
  • Barany, S., Madal, F., and Shilov, V. (2004) Study of electrophoresis. Prog. Colloid Polym. Sci., 128:14–20.
  • Ermolina, I., and Morgan, H. (2005) The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis. J. Colloid Interface Sci., 285:419–428.
  • Huges, P.M., Morgan, H., and Flynn M.F. (1999) The dielectrophoretic behavior of submicron latex spheres: Influence of surface conductance. J. Colloid Interface Sci., 220:454–457.
  • Olphen, H.V., and Waxman M.H. (1958) Surface conductance of sodium bentonite in water. Clay Clay Miner., 5:61–80.
  • Fricke, H., and Curtis, J. (1936) The determination of surface conductance from measurements of suspensions of spherical particles. J. Phys. Chem, 40(6):715–722.
  • Wieler, R.A., and Chaussidon J. (1968) Surface conductivity and dielectrical properties of montmorilloniote gels. Clay Clay Miner., 16:147–155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.