173
Views
12
CrossRef citations to date
0
Altmetric
Articles

Molecular Dynamics in 1- and 2-D Confinement as Studied for the Case of Poly(Cis-1,4-Isoprene)

, , , &
Pages S22-S30 | Received 01 Apr 2014, Accepted 09 May 2014, Published online: 18 Nov 2014

References

  • A. Serghei, A., and Kremer, F. (2008) Broadband dielectric studies on the interfacial dynamics enabled by use of nanostructured electrodes. Rev. Sci. Instrum. 79:026101. doi:10.1063/1.2839021
  • Serghei, A., and Kremer, F. (2008) Metastable states of glassy dynamics, possibly mimicking confinement-effects in thin polymer films. Macromol. Chem. Phys. 209:810–817. doi:10.1002/macp.200700534
  • Serghei, A., Huth, H., Schick, C., and Kremer, F. (2008) Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules. 41:3636–3639. doi:10.1021/ma702381t
  • Mapesa, Erber, M., Tress, M., Eichhorn, K.-J., Serghei, A., Voit, B., et al. (2010) Glassy dynamics in nanometer thin layers of polystyrene. Eur. Phys. J. Spec. Top. 189: 173–180. doi:10.1140/epjst/e2010-01320-2
  • Tress, M., Erber, M., Mapesa, E.U., Huth, H., Muüller, J., Serghei, A., et al. (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules. 43:9937–9944. doi:10.1021/ma102031k
  • Erber, M., Tress, M., Mapesa, E.U., Serghei, A., Eichhorn, K.-J., Voit, B., et al. (2010) Glassy dynamics and glass transition in thin polymer layers of PMMA deposited on different substrates. Macromolecules. 43:7729–7733. doi:10.1021/ma100912r
  • Solar, M., Mapesa, E.U., Kremer, G., Binder, K., and Paul, W. (2013) The dielectric α -relaxation in polymer films: A comparison between experiments and atomistic simulations. Europhys. Lett. 10466004. doi:10.1209/0295-5075/104/66004
  • Mapesa, E.U., Tress, M., Schulz, G., Huth, H., Schick, C., Reiche, M., et al. (2013) Segmental and chain dynamics in nanometric layers of poly(cis-1,4-isoprene) as studied by broadband dielectric spectroscopy and temperature-modulated calorimetry. Soft Matter. 9:10592. doi:10.1039/c3sm51311d
  • Tress, M., Mapesa, E.U., Kossack, W., Kipnusu, W.K., Reiche, M., and Kremer, F. (2013) Glassy dynamics in condensed isolated polymer coils. Science. 341:1371–1374. doi:10.1126/science.123850
  • Mapesa, E.U., Tarnacka, M., Kaminska, E., Adrjanowicz, K., Dulski, M., Kossack, W., et al. (2014) Molecular dynamics of itraconazole confined in thin supported layers. RSC Adv. 4:28432–28438.
  • Weber, R., Zimmermann, K.M., Tolan, M., Stettner, J., Press, W., Seeck, O., et al. (2001) X-ray reflectivity study on the surface and bulk glass transition of polystyrene. Phys. Rev. E. 64:061508. doi:10.1103/PhysRevE.64.061508
  • Efremov, M.Y., Olson, E., Zhang, M., Zhang, Z., and Allen, L. (2003) Glass transition in ultrathin polymer films: calorimetric study. Phys. Rev. Lett. 91:085703. doi:10.1103/PhysRevLett.91.085703
  • Efremov, M.Y., Olson, E.A., Zhang, M., Zhang, Z., and Allen, L.H. (2004) Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules. 37:4607–4616. doi:10.1021/ma035909r
  • Lupaşcu, V., Huth, H., Schick, C., and Wübbenhorst, M. (2005) Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim. Acta. 432:222–228. doi:10.1016/j.tca.2005.04.022
  • Huth, H., Minakov, A.A., and Schick, C. (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J. Polym. Sci. Part B Polym. Phys. 44:2996–3005. doi:10.1002/polb.20921
  • Huth, H., Minakov, A.A., Serghei, A., Kremer, F., and Schick, C. (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur. Phys. J. Spec. Top. 141:153–160. doi:10.1140/epjst/e2007-00033-y
  • Lupaşcu, V., Picken, S.J., and Wübbenhorst, M. (2006) Cooperative and non-cooperative dynamics in ultra-thin films of polystyrene studied by dielectric spectroscopy and capacitive dilatometry. J. Non-Cryst. Solids. 352:5594–5600. doi:10.1016/j.jnoncrysol.2006.09.004
  • Bodiguel, H., and Fretigny, C. (2007) Viscoelastic properties of ultrathin polystyrene films. Macromolecules. 40:7291–7298. doi:10.1021/ma070460d
  • Stockmayer, W.H. (1967) Dielectric dispersion in solutions of flexible polymers. Pure Appl. Chem. 15:539–554.
  • Havriliak, S., and Negami, S. (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 8:161–210.
  • Cole, K.S., and Cole, R. H. (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9:341. doi:10.1063/1.1750906
  • Davidson, D.W., and Cole, R.H. (1951) Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19:1484. doi:10.1063/1.1748105
  • Vogel, H. (1921) Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Z. 22:645–646.
  • Fulcher G. S. (1925) Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8:339–355.
  • Tammann, G., and Hesse, G. (1926) Die Abhängigkeit der Viscosität von der Temperatur bei Unterkühlten Flüssigkeiten. Z. Für Anorg. Allg. Chem. 156:245–257.
  • Boese, D., and Kremer, F. (1990) Molecular dynamics in bulk cis-polyisoprene as studied by dielectric spectroscopy. Macromolecules. 23:829–835.
  • Floudas, G., and Reisinger, T. (1999) Pressure dependence of the local and global dynamics of polyisoprene. J. Chem. Phys. 111:5201.
  • Kremer, F., and Schönhals, A., eds. (2003) Broadband Dielectric Spectroscopy; Springer-Verlag: Berlin.
  • Bello, A., Laredo, E., and Grimau, M. (1999) Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: Application to α-PVDF. Phys. Rev. B. 60:12764–12774.
  • Petychakis, L., Floudas, G., and Fleischer, G. (1997) Chain dynamics of polyisoprene confined in porous media. A dielectric spectroscopy study. Europhys. Lett. 40:685–690.
  • Kremer, F., Mapesa, E.U., Tress, M., and Reiche, M. (2011) Molecular dynamics of polymers at nanometric length scales: From thin layers to isolated coils, pp. 163–178; Recent Adv. Broadband Dielectr. Spectrosc. ; Kalmykov, Y.P., ed.; Springer: Dordrecht, 2011.
  • Adam, G., and Gibbs, J.H. (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43:139–146.
  • Cicerone, M.T., and Ediger, M.D. (1995) Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl. J. Chem. Phys. 103:5684. doi:10.1063/1.470551
  • Schiener, B., Böhmer, R., Loidl, A., and Chamberlin, R.V. (1996) Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids. Science. 274:752–754.
  • Richert, R. (1997) Evidence for dynamic heterogeneity near T g from the time-resolved inhomogeneous broadening of optical line shapes. J. Phys. Chem. B. 101:6323–6326.
  • Donth, E.-J. (1982) The size of cooperatively rearranging regions at the glass transition. J. Non-Cryst. Solids. 53:325–330.
  • Donth, E., Huth, H., and Beiner, M. (2001) Characteristic length of the glass transition. J. Phys. Condens. Matter. 13:L451–L462.
  • Schönhals, A., Goering, H., Schick, C., Frick, B., and Zorn, R. (2004) Glass transition of polymers confined to nanoporous glasses. Colloid Polym. Sci. 282:882–891. doi:10.1007/s00396-004-1106-3
  • Berthier, L. (2005) Direct experimental evidence of a growing length scale accompanying the glass transition. Science. 310:1797–1800. doi:10.1126/science.1120714
  • Cangialosi, D., Alegría, A., and Colmenero, J. (2007) Route to calculate the length scale for the glass transition in polymers. Phys. Rev. E. 76. doi:10.1103/PhysRevE.76.011514
  • Saiter, A., Delbreilh, L., Couderc, H., Arabeche, K., Schönhals, A., and Saiter, J.-M. (2010) Temperature dependence of the characteristic length scale for glassy dynamics: Combination of dielectric and specific heat spectroscopy. Phys. Rev. E. 81. doi:10.1103/PhysRevE.81.041805
  • Tracht, U., Wilhelm, M., Heuer, A., Feng, H., Schmidt-Rohr, K., and Spiess, H.W. (1998) Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81:2727.
  • Reinsberg, S.A., Qiu, X.H., Wilhelm, M., Spiess, H.W., and Ediger, M.D. (2001) Length scale of dynamic heterogeneity in supercooled glycerol near Tg. J. Chem. Phys. 114:7299–7302. doi:10.1063/1.1369160
  • Bahar, I., Erman, B., Kremer, F., and Fischer, E.W. (1992) Segmental motions of cis-polyisoprene in the bulk state: Interpretation of dielectric relaxation data. Macromolecules. 25:816–825.
  • Bahar, I., and Erman, B. (1987) Investigation of local motions in polymers by the dynamic rotational isomeric state model. Macromolecules. 20:1368–1376.
  • Bahar, I., Erman, B., and Monnerie, L. (1989) Application of the dynamic rotational isomeric states model to poly (ethylene oxide) and comparison with nuclear magnetic relaxation data. Macromolecules. 22:2396–2403.
  • Peter, S., Napolitano, S., Meyer, H., Wuübbenhorst, M., and Baschnagel, J. (2008) Modeling dielectric relaxation in polymer glass simulations: Dynamics in the bulk and in supported polymer films. Macromolecules. 41:7729–7743. doi:10.1021/ma800694v
  • Zimm, B.H. (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24:269. doi:10.1063/1.1742462
  • Poinern, G.E.J., Ali, N., and Fawcett, D. (2011) Progress in nano-engineered anodic aluminum oxide membrane development. Materials. 4:487–526. doi:10.3390/ma4030487

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.