353
Views
5
CrossRef citations to date
0
Altmetric
Articles

Size Effects in a Silica-Polystyrene Nanocomposite: Molecular Dynamics and Surface-enhanced Continuum Approaches

, , , , , & show all
Pages S142-S151 | Received 06 Jun 2014, Accepted 21 Aug 2014, Published online: 25 Sep 2014

References

  • Ghanbari, A., Ndoro, T. V. M., Leroy, F., Rahimi, M., Böhm, M. C., and Müller-Plathe, F. (2012). Interphase structure in silica–polystyrene nanocomposites: A coarse-grained molecular dynamics study. Macromolecules, 45(1):572–584.
  • Ndoro, T. V. M., Voyiatzis, E., Ghanbari, A., Theodorou, D. N., Böhm, M. C., and Müller-Plathe, F. (2011) Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: Atomistic molecular dynamics simulations. Macro-molecules, 44(7):2316–2327.
  • Rahimi, M., Iriarte-Carretero, I., Ghanbari, A., Böhm, M. C., and Müller-Plathe, F. (2012) Mechanical behavior and interphase structure in a silica-polystyrene nanocomposite under uniaxial deformation. Nanotechnology, 23(30):305702.
  • Zhao, J., Nagao, S., Odegard, G. M., Zhang, Z., Kristiansen, H., and He, J. (2013) Size-dependent mechanical behavior of nanoscale polymer particles through coarsegrained molecular dynamics simulation. Nanoscale Res. Lett., 8(1):1–26.
  • Pfaller, S., Rahimi, M., Possart, G., Steinmann, P., Müller-Plathe, F., and Böhm, M. C. (2013) An Arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites. Computer Method. Appl. Mechan. Eng., 260:109–129.
  • Yang, S., Choi, J., and Cho, M. (2012) Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: Molecular dynamics study. ACS Appl. Mater. Interface., 4(9):4792–4799.
  • Adnan, A., Sun, C. T., and Mahfuz, H. (2007) A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Composite. Sci. Technol., 67(3–4):348–356.
  • Cho, J., and Sun, C. T. (2007) A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites. Comput. Mater. Sci., 41(1):54–62.
  • Cho, J., Joshi, M. S., and Sun, C. T. (2006) Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol., 66(13):1941–1952.
  • Chisholm, N., Mahfuz, H., Rangari, V. K., Ashfaq, A., and Jeelani, S. (2005) Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites. Compos. Struct., 67(1):115–124.
  • Tsai, J. L., and Tzeng, S. H. (2008) Characterizing mechanical properties of particulate nanocomposites using micromechanical approach. J. Compos. Mater., 42(22):2345–2361.
  • Kontou, E., and Anthoulis, G. (2007) The effect of silica nanoparticles on the thermo-mechanical properties of polystyrene. J. Appl. Polymer Sci., 105(4):1723–1731.
  • Brown, D., Mélé, P., Marceau, S., and Albérola, N. D. (2003) A molecular dynamics study of a model nanoparticle embedded in a polymer matrix. Macromolecules, 36(4):1395–1406.
  • Odegard, G. M., Clancy, T. C., and Gates, T. S. (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer, 46(2):553–562.
  • Li, X. H., Tjong, S. C., Meng, Y. Z., and Zhu, Q. (2003) Fabrication and properties of polypropylene carbonate)/calcium carbonate composites. J. Polymer Sci., Part B, 41(15):1806–1813.
  • Boutaleb, S., Zaïri, F., Mesbah, A., Naït-Abdelaziz, M., Gloaguen, J. M., Boukharouba, T., and Lefebvre, J. M. (2009) International Journal of Solids and Structures. Int. J. Solid. Struct., 46(7–8):1716–1726.
  • Marcadon, V., Brown, D., Hervé, E., Mélé, P., Albérola, N. D., and Zaoui, A. (2013) Confrontation between Molecular Dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites. Comput. Mater. Sci., 79:495–505.
  • Brown, D., Marcadon, V., Mélé, P., and Albérola, N. D. (2008) Effect of filler particle size on the properties of model nanocomposites. Macromolecules, 41(4):1499–1511.
  • Gurtin, M. E., and Ian Murdoch, A. (1975) A continuum theory of elastic material surfaces. Arch. Rat. Mechan. Anal., 57(4):291–323.
  • Javili, A., and Steinmann, P. (2009) A finite element framework for continua with boundary energies. Part I: The two-dimensional case. Computer Method. Appl. Mechan. Eng., 198(27–29):2198–2208.
  • Davydov, D., Javili, A., and Steinmann, P. (2013) On molecular statics and surface-enhanced continuum modeling of nano-structures. Comput. Mater. Sci., 69:510–519.
  • Davydov, D., Javili, A., Steinmann, P., and McBride, A. (2013) A comparison of atomistic and surface enhanced continuum approaches at finite temperature, pp:43–57 Surface Effects in Solid Mechanics; Springer Verlag: Berlin Heidelberg, Germany.
  • Davydov, D., and Steinmann, P. (2014) Reviewing the roots of continuum formulations in molecular systems. Part I: Particle dynamics, statistical physics, mass and linear momentum balance equations. Math. Mechan. Solid., 19: 411–433.
  • Davydov, D., and Steinmann, P. (2013) Reviewing the roots of continuum formulations in molecular systems. Part II: Energy and angular momentum balance equation. Math. Mechan. Solid., 1–16.
  • Davydov, D., and Steinmann, P. (2013) Reviewing the roots of continuum formulations in molecular systems. Part III: Stresses, couple stresses, heat fluxes. Math. Mechan. Solid., 1–17.
  • Sharma, P., and Ganti, S. (2004) Size-dependent eshelby’s tensor for embedded nanoinclusions incorporating surface/interface energies. J. Appl. Mechan., 71(5):663–671.
  • Duan, H. L., Yi, X., Huang, Z. P., and Wang, J. (2007) A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part II-Application and scaling laws. Mechan. Mater., 39(1):94–103.
  • Duan, H. L., Wang, J., Huang, Z. P., and Karihaloo, B. L. (2005) Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 53(7):1574–1596.
  • Altenbach, H., Eremeyev, V. A., and Morozov, N. F. (2012) Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci., 59:83–89.
  • Eremeyev, V. A., Altenbach, H., and Morozov, N. F. (2009) The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys., 54(2):98–100.
  • Chatzigeorgiou, G., Javili, A., and Steinmann, P. (2014) Surface electrostatics: Theory and computations. Proceed. Math. Phys. Eng. Sci. / The Royal Soc., 470(2164):20130628.
  • Rahimi, M., Karimi-Varzaneh, H. A., Böhm, M. C., Müller-Plathe, F., Pfaller, S., Possart, G., and Steinmann, P. (2011) Nonperiodic stochastic boundary conditions for molecular dynamics simulations of materials embedded into a continuum mechanics domain. J. Chem. Phys., 134(15):154108.
  • Reith, D., Pütz, M., and Müller-Plathe, F. (2003) Deriving effective mesoscale potentials from atomistic simulations. J. Comp. Chem., 24(13):1624–1636.
  • Frenkel, D., and Smit, B. (2001) Understanding Molecular Simulation: From Algorithms to Applications. Academic Press: San Diego, California, USA.
  • Verlet, L. (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev.
  • Plimpton, S. (1995) Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys., 117(1):1–19.
  • Theodorou, D. N., and Suter, U. W. (1986) Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules, 19(1):139–154.
  • McBride, A., Javili, A., Steinmann, P., and Reddy, B. D. (2014) A finite element implementation of surface elasticity at finite strains using the deal.II library. Submitted.
  • Javili, A., McBride, A., Steinmann, P., and Reddy, B. D. (2014) A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput. Mechan., 1–27.
  • Bangerth, W., Hartmann, R., and Kanschat, G. (2007) Deal.II—A general-purpose object-oriented finite element library. ACM Transact. Math. Software, 33(4):1–27.
  • Mori, T., and Tanaka, K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall., 21(5):571–574.
  • Eshelby, J. D. (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceed. Royal Soc. A, 241(1226):376–396.
  • Nozières, P., and Wolf, D. E. (1988) Interfacial properties of elastically strained materials - I. Thermodynamics of a planar interface. Zeitschrift Phys. B, 70(3):399–407.
  • Shenoy, V. (2005) Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B, 71(9):094104.
  • Lide, D. R. (2004) CRC Handbook of Chemistry and Physics, 85th Ed.; Taylor and Francis: Boca Raton, Florida, USA.
  • Nelder, J. A., and Mead, R. (1965) A simplex method for function minimization. Comp. J., 7(4):308–313.
  • Octave Community. (2014) GNU Octave 3.8.1. Technical Report.
  • Maillard, D., Kumar, S. K., Fragneaud, B., Kysar, J. W., Rungta, A., Benicewicz, B. C., Deng, H., Brinson, L. C., and Douglas, J. F. (2012) Mechanical properties of thin glassy polymer films filled with spherical polymer-grafted nanoparticles. Nano Lett., 12(8):3909–3914.
  • Kumar, S. K., Jouault, N., Benicewicz, B., and Neely, T. (2013) Nanocomposites with polymer grafted nanoparticles. Macromolecules, 46(9):3199–3214.
  • Javili, A., McBride, A., Steinmann, P., and Reddy, B. D. (2012) Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies. Phil. Mag., 92(28–30):3540–3563.
  • Javili, A., McBride, A., Mergheim, J., Steinmann, P., and Schmidt, U. (2013) Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solid. Struct., 50(16–17):2561–2572.
  • Maranganti, R., and Sharma, P. (2007) A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. J. Mechan. Phys. Solid., 55(9):1823–1852.
  • Maranganti, R., and Sharma, P. (2007) Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett., 98(19):195504.
  • Javili, A., dell’Isola, F., and Steinmann, P. (2013) Geometrically nonlinear highergradient elasticity with energetic boundaries. J. Mechan. Phys. Solid., 61(12):2381–2401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.