241
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Simulations of the effects of filler aggregation and filler-rubber bond on the elongation behavior of filled cross-linked rubber by coarse-grained molecular dynamics

Pages 263-271 | Received 06 Jun 2017, Accepted 05 Jul 2017, Published online: 03 Aug 2017

References

  • Suzuki, N., Ito, M., and Yatsuyanagi, F. (2005) Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer, 46:193–201.
  • Droste, D.H., and Dibenedetto, A.T. (1969) The glass transition temperature of filled polymers and its effect on their physical properties. Journal of Applied Polymer Science 13:2149–2168.
  • Mansencal, R., Haidar, B., Vidal, A., Delmotte, L., Chezeau, J.-M. (2001) Polymer International, 50–54:387–394.
  • Hooper, J. B., and Schweizer, K. S. (2005) Contact aggregation bridging, and steric stabilization in dense polymer-particle mixtures. Macromolecules, 38:8858−8869.
  • Deng, H., Liua, Y., Gaia, D., Dikina D. A., Putza, K. W., Chena, W, Brinsona, C. L., Burkhartd, C., Poldneffe, M., Jiangd, B., and Papakonstantopoulosd, G. J. (2012) Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites. Composites Science and Technology, 72:1725−1732.
  • Qiao, R., and Brinson, L. C. (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Composites Science and Technology, 69:491−499.
  • Pavlova, A. S., and Khalatur, P. G. (2016) Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation. Soft Matter, 24:5402−5419.
  • Karatrantos, A., Clarke, N., and Kröger, M. (2016) Modeling of polymer structure and conformations in polymer nanocomposites from atomistic to mesoscale. A Review. Polymer Review, 56:385−428.
  • Starr, F. W., Schroder, T. B., Glotzer, S. C. (2001) Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films. Physical Review E, 64:021802.
  • Pandey, Y. N., and Doxastakis, M. (2012) Detailed atomistic Monte Carlo simulations of a polymer melt on a solid surface and around a nanoparticle. Journal of Chemical Physics, 136:094901.
  • Pryamitsyn, V., Ganesan, V. (2006) Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules, 39:844−856.
  • Kremer, K., and Grest, G. S. (1990) Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. Journal of Chemical Physics, 92:5057–5086.
  • Liu, J., Zhang, L. Q., Cao, D. P., and Wang, W. C. (2009) Polymer–nanoparticle interfacial behavior revisited: A molecular dynamics study. Physical Chemistry Chemical Physics, 11:11365.
  • Kojima, T., and Koishi, M. (2016) Mechanical behavior of filled rubber by coarse-grained molecular dynamics simulations. Proceedings of International Rubber Conference 2016 (IRC2016); Kitakyushu;, G9-C-3.
  • Hagita, K., Morita, H., Doi, M., and Takano, H. (2016) Coarse-grained molecular dynamics simulation of filled polymer nanocomposites under uniaxial elongation. Macromolecules, 49:1972−1983.
  • Yagyu, H., and Utsumi, T. (2009) Coarse-grained molecular dynamics simulation of nanofilled crosslinked rubber. Computer Material Science, 46:286−292.
  • Hayakawa, T., Hashimoto, K., Morita, H., and Doi, M. (2005) Investigation of Stress-Strain Relationship for Polymer Networks with Crosslink Types by Molecular Dynamics Simulation (OCTA). Proceedings of International Rubber Conference 2005 (IRC2005); Yokohama; G11-11.
  • Aoyagi, T., Sawa, F., Shoji, T., Fukunaga, H., Takimoto, J., and Doi, M. (2002) A general-purpose coarse-grained molecular dynamics program, Comput. Physics Communications, 145:267–279.
  • Plimpton, S. J. (1995) Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117:1–19.
  • Rinde, J. A. (1970) Poisson’s ratio for rigid plastic foams. Journal of Applied Polymer Science, 14:1913–1926.
  • Yagyu, H. (2015) Coarse-grained molecular dynamics simulation of the effects of strain rate on tensile stress of cross-linked rubber. Soft Materials, 13:263–270.
  • Dudek, T., and Bueche, J. F. (1964) Tensile strength of gum and reinforced EPR and SBR vulcanizates. Journal of Applied Polymer Science, 8:555–564.
  • Suchiva, K., Kowitteerawut, T., and Srichantamit, L. (2000) Structure properties of purified natural rubber. Journal of Applied Polymer Science, 78:1495–1504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.