136
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A facile electrostatic spraying method to prepare polyvinylpyrrolidone modified TiO2 particles with improved electrorheological effect

, , &
Pages 315-324 | Received 23 Apr 2017, Accepted 14 Jul 2017, Published online: 30 Aug 2017

References

  • Hao, T. (2001) Electrorheological fluids. Advanced Materials, 13(24):1847–1857.
  • Block, H., Kelly, J.P., Qin, A., and Watson, T. (1990) Materials and mechanisms in electrorheology. Langmuir, 6(1):6–14.
  • Hasley, T.C., and Toor, W. (1990) Structure of electrorheological fluids. Physical Review Letters, 65(22):2820–2823.
  • Wu, C.W., and Conrad, H. (1998) Shear strength of electrorheological particle clusters. Materials Science and Engineering, 248(1):161–164.
  • Han, Y.M., Kang, P.S., Sung, K.G., and Choi, S.B. (2007) Force feedback control of a medical haptic master using an electrorheological fluid. Journal of Intelligent Material Systems and Structures, 18(12):1149–1154.
  • Ding, L.H., Huang, Q.B., Xu, Z.S., and Zhang, Q. (2010) The energy reflection coefficient of electrorheological fluid with continuously changing acoustic impedance. International Journal of Mechanics and Materials in Design, 6(2):135–145.
  • Nguyen, Q.H., and Choi, S.B. (2009) A new approach for dynamic modeling of an electrorheological damper using a lumped parameter method. Smart Materials and Structures, 18(11):115020.
  • Li, Q.L. (2001) Preliminary experiments of the piezoelectric ceramic, composite electrorheological fluid and their integrated structure. Journal of Northwest University, 31:292–294.
  • Winslow, W.M. (1949) Induced fibration of suspensions. Journal of Applied Physics, 20(12):1137–1140.
  • Filisko, F.E., and Radzilowski, L.H. (1990) An intrinsic mechanism for the activity of aluminosilicate based electrorheological materials. Journal of Rheology, 34(4):539–552.
  • Cho, M.S., Choi, H.J., and To, K.W. (1998) Effect of ionic pendent groups on a polyaniline-based electrorheological fluid. Macromolecular Rapid Communications, 19(6):271–273.
  • Jun, J.B., and Suh, K.D. (2003) Preparation and electrorheological characterization of suspensions of poly(urethane acrylate)/clay nanocomposite particles. Journal of Applied Polymer Science, 90(2):458–464.
  • Choi, H.J., Cho, M.S., Kang, K.K., and Ahn, W.S. (2000) Electrorheological properties of a suspension of a mesoporous molecular sieve (MCM-41). Microporous and Mesoporous Materials, 39(1):19–24.
  • EI Wahed, A.K., Sproston, J.L., and Schleyer, G.K. (2002) Electrorheological and magnetorheological fluids in blast resistant design applications. Materials & Design, 23(4):391–404.
  • Rodríguez-López, J., Segura, L.E., and Freijo, F.M. (2012) Ultrasonic velocity and amplitude characterization of magnetorheological fluids under magnetic fields. Journal of Magnetism and Magnetic Materials, 324(2):222–230.
  • Wen, W.J., Huang, X.X., Yang, S.H., Lu, K.Q., and Sheng, P. (2003) The giant electrorheological effect in suspensions of nanoparticles. Nature Materials, 2(11):727–730.
  • Krzton-Maziopa, A., Gorkier, M., and Plocharski, J. (2012) ER suspensions of composite core-shell microspheres with improved sedimentation stability. Polymers for Advanced Technologies, 23(3):702–709.
  • Wu, J.H., Liu, F.H., Guo, J.J., Cui, P., Xu, G.J., and Cheng, Y.C. (2012) Preparation and electrorheological characteristics of uniform core/shell structural particles with different polar molecules shells. Colloids and Surfaces, 410:136–143.
  • Liu, F.H., Xu, G.J., Wu, J.H., Cheng, Y.C., Guo, J.J., and Cui, P. (2009) Preparation and electrorheological properties of a hydroxyl titanium oxalate suspension. Smart Materials and Structures, 18(12):125015.
  • Liu, F.H., Xu, G.J., Wu, J.H., Chen, Y.C., Guo, J.J., and Cui, P. (2010) Synthesis and electrorheological properties of oxalate groupmodified amorphous titanium oxide nanoparticles. Colloid and Polymer Science, 288(18):1739–1744.
  • Qiao, Y.P., Yin, J.B., and Zhao, X.P. (2007) Oleophilicity and the strong electrorheological effect of surface-modified titanium oxide nano-particles. Smart Materials and Structures, 16(2):332–339.
  • Wei, J.H., Zhao, L.H., Peng, S.L., Shi, J., Liu, Z.Y., and Wen, W.J. (2008) Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects. Journal of Sol-Gel Science and Technology, 47(3):311–315.
  • Liu Y.D., Zhang K., Zhang W.L., and Choi, H.J. (2012) Conducting material-incorporated electrorheological fluids: Core-shell structured spheres. Australian Journal of Chemistry, 65:1195–1202.
  • Liu, X.H., Guo, J.J., Cheng, Y.C., Xu, G.J., Li, Y., and Cui, P. (2010) Synthesis and electrorheological properties of polar molecule-dominated TiO2 particles with high yield stress. Rheologica Acta, 49(8):837–843.
  • Dong, X.F., Huo, S., and Qi, M. (2016) Comparison of electrorheological performance between urea-coated and graphene oxide-wrapped core-shell structured amorphous TiO2 nanoparticles. Smart Materials and Structures, 25(1):015033.
  • Cao, J.G., Shen, M., and Zhou, L.W. (2006) Preparation and electrorheological properties of triethanolamine-modified TiO2. Journal of Solid State Chemistry, 179(5):1565–1568.
  • Wang, B.X., Zhao, Y., and Zhao, X.P. (2007) The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 295(1):27–33.
  • Cheng, Y.C., Guo, J.J., Xu, G.J., Cui, P., Liu, X.H., Liu, F.H., and Wu, J.H. (2008) Electrorheological property and microstructure of acetamide-modified TiO2 nanoparticles. Colloid and Polymer Science, 286(13):1493–1497.
  • Cho, M.S., Cho, Y.H., Choi, H.J., and Jhon, M. S. (2003) Synthesis and electrorheological characteristics of polyaniline-coated poly (methyl methacrylate) microsphere: Size effect. Langmuir, 19:5875–5881.
  • Vemuri, S.H., Jhon, M.S., Zhang, K., and Choi, H. J. (2012) New analysis of yield stress on giant electrorheological fluids. Colloid and Polymer Science, 290:189–192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.