162
Views
5
CrossRef citations to date
0
Altmetric
Articles

Microstructural and Compressive Deformation Behavior of Aluminum-Foam-Filled Sections

, , , &
Pages 14-23 | Received 23 Jul 2018, Accepted 22 Sep 2018, Published online: 05 Oct 2018

References

  • Movahedi, M.M., Abtahi, S.Y., and Motamedi, M. (2011) Iran railway efficiency analysis. Using DEA: An International Comparison, International Journal of Applied Operational, 1(1):1–7.
  • Movahedi, M.M., Saati, S., and Vahidi, A.R. (2007) Iranian railway efficiency (1971-2004): an application of DEA, J. Contemp. Math. Sciences, 2(32):1569–1579.
  • Banhart, J., and Baumeister, J. (1998) Deformation characteristics of metal foams. Journal of Materials Science, 33:1431–1440.
  • Rajak, D.K., Kumaraswamidhas, L.A., and Das, S. (2014) Mechanical behaviour and energy absorption foam filled structures of square section under compression loading. Applied Mechanics and Materials, 592-594:1109–1113.
  • Seitzberger, M., Rammerstorfer, F.G., Gradinger, R., Degischer, H.P., Blaimschein, M., and Walch, C. (2000) Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. International Journal of Solids and Structures, 37(30):4125–4147.
  • Reid, S.R., Reddy, T.Y., and Gray, M.D. (1986) Static and dynamic axial crushing of foam-filled sheet metal tubes. International Journal of Mechanical Sciences, 28(5):295–322.
  • Lehmhus, D., Vesenjak, M., de Schampheleire, S., and Fiedler, T. (2017) From Stochastic Foam to Designed Structure: balancing Cost and Performance of Cellular Metals. Materials, 10(922):1–32.
  • Kumaraswamidhas, L.A., Dipen, K., and Das, R.S. (2016) An investigation on axial deformation behavior of thin-wall unfilled and filled tube with aluminum alloy (AlSi7Mg) foam reinforced with SiC particles. Journal of Materials Engineering and Performance, 25:3430–3438.
  • Yang, K., Yang, X., Chunnian, H., Liu, E., Shi, C., Liying, M., Qunying, L., Li, J., and Zhao, N. (2017) Damping characteristics of Al matrix composite foams reinforced by in-situ grown carbon nanotubes. Materials Letters, 209:68–70.
  • Linul, E., Marsavina, L., Voiconi, T., and Sadowski, T. (2013) Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression. Journal of Physics: Conference Series, 451:012002. doi: 10.1088/1742-6596/451/1/012002.
  • Rabiei, A., and Vincent Hammond, A. (2012) Study on Dynamic Properties of Composite Metal Foams. Army Research LAB Aberdeen Proving Ground MD Weapons and Materials Research. CR-706.
  • Fiedler, F.N., Sales, G., Giffoni, B.B., Maçaneiro, L.R., Mariana De Karam, E.B., Caiame Januário, N., Dagoberto, P., André Silva, B., and Paulo Ricardo, S. (2016) Characterization and comparison of Brazilian and foreign leased pelagic longline fleets in the Southwestern Atlantic Ocean between 2003 and 2014. How Different are These Fisheries?, Biodiversidade E Conservação Marinha, 5:1–16.
  • Alvandi, Y., and Rabiei, T.A. (2014) Use of Composite Metal Foam for Improving Absorption of Collision Forces. Procedia Materials Science, 4:377–438.
  • Rohatgi, P. (1991) Cast aluminum-matrix composites for automotive application. The Journal of the Minerals, Metals & Materials Society (TMS), 43(10):10–15. doi: 10.1007/BF03220538.
  • Stong, N., Deng, Z., Gupta, R., Sufen, H., Shiela Paul, A.K., Weiner, E.E., Eichler, T.G., Catrina C, F., Laura Courtney, R.K., Lieberman, W.P., Davuluri, R.V., and Riethman, H. (2014) Subtelomeric CTCF and Cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline. Genome Research, 24(6):1039–1050. doi: 10.1101/gr.166983.113.
  • Rohatgi, P.K., Asthana, R., and Das, S. (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. International Metals Reviews, 31(3):115–139.
  • Orbulov, I.N. (2012) Compressive Behaviour of Metal Matrix Syntactic Foams. Acta Polytechnica Hungarica, 9(2):43–56.
  • Rajesh, C., Chen, R., Kim, H.L., Burhans, R., Miller, W., Santhosh, S., Davuluri, R.V., Butte, A.J., Schuster, S.C., Seshagiri, S., Thomas, G., Gupta, R., and Ratan, A. (2012) Sequencing and analysis of a South Asian-Indian personal genome. BMC Genomics, 13(440): 440.
  • Fiedler, S.D., Carletti, M.Z., Hong, X., and Christenson, L.K. (2008) Hormonal Regulation of MicroRNA Expression in Periovulatory Mouse. Mural Granulosa Cells, Biology of Reproduction, 79:1030–1037. doi: 10.1095/biolreprod.108.069690.
  • Lehmhus, D., Bosse, S., and Busse, M., Structural Materials and Processes in Transportation, Sensorial Materials, Chapter: 17, Publisher: Wiley VCH, 517–548, DOI: 10.1002/9783527649846.ch17
  • Rabiei, A., and Vendra, L.J. (2009) A comparison of composite metal foam’s properties and other comparable metal foams. Materials Letters, 63(5):533–536.
  • Brown, J.A., Vendra, L.J., and Rabiei, A. (2010) Bending properties of Al-steel and steel-steel composite metal foams. Metallurgical and Materials Transactions A, 41(11):2784–2793.
  • Rabiei, A., Vendra, L., and Kishi, T. (2008) Fracture behavior of particle reinforced metal matrix composites. Composites Part A: Applied Science and Manufacturing, 39(2):294–300.
  • Azzi, W., Roberts, W.L., and Rabiei, A. (2007) A study on pressure drop and heat transfer in open cell metal foams for jet engine applications. Materials & Design, 28(2):569–574.
  • Chen, S., Bourham, M., and Rabiei, A. (2015) Neutrons attenuation on composite metal foams and hybrid open-cell Al foam. Radiation Physics and Chemistry, 109:27–39.
  • Yang, D., Zhongyun, H., Chen, W., Jun, L., Chen, J., Wang, H., Wang, L., Jiang, J., and Aibin, M. (2016) Fabrication of Mg-Al alloy foam with close-cell structure by powder metallurgy approach and its mechanical properties. Journal of Manufacturing Processes, 22:290–296.
  • Mondal, D.P. (2009) Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Materials Science & Engineering A, 507:102–109.
  • Lin, Y., Zhang, Q., Xiangyu, M., and Gaohui, W. (2016) Mechanical behavior of pure Al and Al–mg syntactic foam composites containing glass cenospheres. Composites Part A: Applied Science and Manufacturing, 87:194–202.
  • Yang, K., Yang, X., Liu, E., Shi, C., Liying, M., Chunnian, H., Qunying, L., Jiajun, L., and Zhao, N. (2018) High strain rate dynamic compressive properties and deformation behavior of Al matrix composite foams reinforced by in-situ grown carbon nanotubes. Materials Science and Engineering: A, 729:487–495.
  • Alfonso, I., Lara, G., González, G., Béjar, L., Aguilar, C., and Figueroa, I.A. (2016) A novel solid state method for manufacturing Al foams by over solution heat treatment. Materials Letters, 174:6–9.
  • Stergioudi, F., Vogiatzis, C.A., Gkrekos, K., Michailidis, N., and Skolianos, S.M. (2015). Electrochemical corrosion evaluation of pure, carbon-coated and anodized Al foams. Corrosion Science, 91(1015):151–159.
  • Liu, J., Qingxiang, Q., Liu, Y., Rongguang, L., and Liu, B. (2016) Compressive properties of Al-Si-SiC composite foams at elevated temperatures. Journal of Alloys and Compounds, 676:239–244.
  • Chen, J.Z., Schmauch, J., Motz, C., and Diebels, S. (2016) Micromechanical characterisation of Ni/Al hybrid foams by nano- and microindentation coupled with EBSD. Acta Materialia, 102:38–48.
  • Feng, Y., Tao, N., and Zhu, Z. (2003) Shisheng Hu and Yi Pan, Effects of aging treatment on the quasi-static and dynamic compressive properties of Al alloy foams. Materials Letters, 57:4058–4063.
  • Banhart, J. (2001) Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46:559–632.
  • Hur, B.-Y., Division of Materials Science & engineering, Gyeongsang National University, UlSFoM NRL, 900, Kajoa-Dong, Chinju, 660-701, Korea, Mater, Sci. Forum, 486-487, Transtech House, Aedermannsdorf, 4711, Switzerland, (2005) 472–475.
  • Park, C., and Nutt, S.R. (2000) PM synthesis and properties of steel foams. Materials Sciences Engineering: A, 288:111–118.
  • Mukai, T., Kanahashi, H., Miyoshi, T., Mabuchi, M., Nieh, T.G., and Higashi, K. (1999) Experimental study of energy absorption in a closed-celled aluminium foam under dynamic loading. Scripta Mater, 44:921–927.
  • C J, Y., H H, E., Banhart, J., and Baumeister, J. (1998) Metal foams. Advancement Materials Processes, 11:45–47.
  • Gibson, L.J. (2000) Mechanical behaviour of metallic foams. Annu Rev Mater Science, 30:191–227.
  • Han, F., Zhu, Z., and Gao, J. (1998) Compressive Deformation and energy absorbing characteristic of foamed aluminum. Metall Materials Transactions A, 29:2497–2502.
  • Kádár, C., Máthis, K., Knapek, M., and Chmelík, F. (2017) The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression. Materials (Basel), 10(2):196. doi: 10.3390/ma10020196.
  • Dannemann, K.L., and James, J. (2000) High strain rate compression of closed-cell aluminum foams. Materials Science Engineering: A, 293:157–164.
  • Hsiao, H.M., Daniel, I.M., and Coreds, R.D. (1620-1642) Strain rate effects on the transverse compressive and shear behaviour of unidirectional composites. Journal of Composite Materials, 33(1999): 1620-1642.
  • Simone, A.E., and Gibson, L.J. (1997) The compressive behaviour of porous copper made by the GASAR process. Journal Materials Sciences, 32:451–457.
  • Hanssen, A.G., Langseth, M., and Hopperstad, O.S. (1999) Static and dynamic crushing of square aluminium extrusions with aluminium foam filler, int. Journal Impact Engineering, 24(4):347–383.
  • Hanssen, A.G., Hopperstad, O.S., and Langseth, M., Crushing of square aluminium extrusions with aluminium foam filler–numerical analyses, SUSI Conference Proceedings: Structures Under Shock and impact V, Thessaloniki, Greece, (1998) 143–152.
  • Hanssen, A.G., Langseth, M., and Hopperstad, O.S. (2001) Optimum design for energy absorption of square aluminium extrusions with aluminium foam filler. International Journal of Mechanical Sciences, 43(1):153–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.