417
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Gelation-based visual detection of analytes

ORCID Icon & ORCID Icon
Pages 93-118 | Received 01 Sep 2018, Accepted 19 Oct 2018, Published online: 02 Nov 2018

References

  • Sangeetha, N.M., and Maitra, U. (2005). Supramolecular gels: functions and uses. Chemical Society Reviews, 34:821–836. doi:10.1039/b417081b.
  • Yu, G., Yan, X., Han, C., and Huang, F. (2013). Characterization of supramolecular gels. Chemical Society Reviews, 42:6697–6722. doi:10.1039/c3cs60080g.
  • Weiss, R.G. (2014). The past, present, and future of molecular gels. What is the status of the field, and where is it going? Journal of the American Chemical Society, 136:7519–7530. doi:10.1021/ja503363v.
  • Dastidar, P. (2008). Supramolecular gelling agents: can they be designed? Chemical Society Reviews, 37:2699–2715. doi:10.1039/b807346e.
  • Zurcher, D.M., and McNeil, A.J. (2015). Tools for identifying gelator scaffolds and solvents. The Journal of Organic Chemistry, 80:2473–2478. doi:10.1021/jo502915w.
  • Svobodova, H., Noponen, V., Kolehmainen, E., and Sievanen, E. (2012). Recent advances in steroidal supramolecular gels. RSC Advances, 2:4985–5007. doi:10.1039/c2ra01343f.
  • Peters, G.M., and Davis, J.T. (2016). Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs. Chemical Society Reviews, 45:3188–3206. doi:10.1039/c6cs00183a.
  • Singh, W.P., and Singh, R.S. (2017). A new class of organogelators based on triphenylmethyl derivatives of primary alcohols: hydrophobic interactions alone can mediate gelation. Beilstein Journal of Organic Chemistry, 13:138–149. doi:10.3762/bjoc.13.17.
  • Qi, Z., and Schalley, C.A. (2014). Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry. Accounts of Chemical Research, 47:2222–2233. doi:10.1021/ar500193z.
  • Adams, D.J., and Topham, P.D. (2010). Peptide conjugate hydrogelators. Soft Matter, 6:3707–3721. doi:10.1039/c000813c.
  • Babu, S.S., Prasanthkumar, S., and Ajayaghosh, A. (2012). Self-assembled gelators for organic electronics. Angewandte Chemie International Edition, 51:1766–1776. doi:10.1002/anie.v51.8.
  • Du, X., Zhou, J., Shi, J., and Xu, B. (2015). Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chemical Reviews, 115:13165–13307. doi:10.1021/acs.chemrev.5b00299.
  • Shakeel, A., Lupi, F.R., Gabriele, D., Baldino, N., and Cindio, B.D. (2018). Bigels: a unique class of materials for drug delivery applications. Soft Materials, 16:77–93. doi:10.1080/1539445X.2018.1424638.
  • Diaz, D.D., Kuhbeck, D., and Koopmans, R.J. (2011). Stimuli-responsive gels as reaction vessels and reusable catalysts. Chemical Society Reviews, 40:427–448. doi:10.1039/c005401c.
  • Wang, Z., Fujisawa, S., Suzuki, M., and Hanabusa, K. (2017). Easy preparation of graphite-containing gel electrolytes using a gelator and characterization of their electrochemical properties. Soft Materials, 15:214–221. doi:10.1080/1539445X.2017.1324489.
  • Segarra-Maset, M.D., Nebot, V.J., Miravet, J.F., and Escuder, B. (2013). Control of molecular gelation by chemical stimuli. Chemical Society Reviews, 42:7086–7098. doi:10.1039/c2cs35436e.
  • Jones, C.D., and Steed, J.W. (2016). Gels with sense: supramolecular materials that respond to heat, light, and sound. Chemical Society Reviews, 45:6546–6596. doi:10.1039/c6cs00435k.
  • McDonagh, C., Burke, C.S., and MacCraith, B.D. (2008). Optical chemical sensors. Chemical Reviews, 108:400–422. doi:10.1021/cr068102g.
  • Song, Y., Wei, W., and Qu, X. (2011). Colorimetric biosensing using smart materials. Advanced Materials, 23:4215–4236. doi:10.1002/adma.201101853.
  • Roda, A., Mirasoli, M., Michelini, E., Fusco, M.D., Zangheri, M., Cevenini, L., Roda, B., and Simoni, P. (2016). Progress in chemical luminescence-based biosensors: A critical review. Biosensors Bioelectronics, 76:164–179. doi:10.1016/j.bios.2015.06.017.
  • Ren, C., Zhang, J., Chen, M., and Yang, Z. (2014). Self-assembling small molecules for the detection of important analytes. Chemical Society Reviews, 43:7257–7266. doi:10.1039/c4cs00161c.
  • Tu, T., Fang, W., and Sun, Z. (2013). Visual-size molecular recognition based on gels. Advanced Materials, 25:5304–5313. doi:10.1002/adma.201301914.
  • Piepenbrock, M.O.M., Lloyd, G.O., Clarke, N., and Steed, J.W. (2010). Metal- and anion-binding supramolecular gels. Chemical Reviews, 110:1960–2004. doi:10.1021/cr9003067.
  • Tam, A.Y.Y., and Yam, V.W.W. (2013). Recent advances in metallogels. Chemical Society Reviews, 42:1540–1567. doi:10.1039/c2cs35354g.
  • Zhang, J., and Su, C.Y. (2013). Metal-organic gels: from discrete metallogelators to coordination polymers. Coordination Chemistry Reviews, 257:1373–1408. doi:10.1016/j.ccr.2013.01.005.
  • Sutar, P., and Maji, T.K. (2016). Coordination polymer gels: soft metal-organic supramolecular materials and versatile applications. Chemical Communications, 52:8055–8074. doi:10.1039/C6CC01955B.
  • King, K.N., and McNeil, A.J. (2010). Streamlined approach to a new gelator: inspiration from solid-state interactions for a mercury-induced gelation. Chemical Communications, 46:3511–3513. doi:10.1039/c002081h.
  • Carter, K.K., Rycenga, H.B., and McNeil, A.J. (2014). Improving Hg-triggered gelation via structural modifications. Langmuir, 30:3522–3527. doi:10.1021/la404567b.
  • Veits, G.K., Carter, K.K., Cox, S.J., and McNeil, A.J. (2016). Developing a gel-based sensor using crystal morphology prediction. Journal of the American Chemical Society, 138:12228–12233. doi:10.1021/jacs.6b06269.
  • Zurcher, D.M., Adhia, Y.J., Romero, J.D., and McNeil, A.J. (2014). Modifying a known gelator scaffold for nitrite detection. Chemical Communications, 50:7813–7816.
  • Hamada, K., Yamada, K., Mitsuishi, M., Ohira, M., and Miyazaki, K. (1992). Gelation of an aqueous fluorinated dye solution. Journal of the Chemical Society. Chemical Communications, 544–545. doi:10.1039/c39920000544.
  • Bieser, A.M., and Tiller, J.C. (2005). Surface-induced hydrogelation. Chemical Communications, 3942–3944. doi:10.1039/b506160a.
  • Ghosh, K., and Kar, D. (2012). Cholesterol appended pyridinium ureas: a case of gel making and breaking for selective visual readout of F−. Organic & Biomolecular Chemistry, 10:8800–8807. doi:10.1039/c2ob26631h.
  • Ghosh, K., Sarkar, A.R., and Chattopadhyay, A.P. (2012). Anthracene-labeled 1,2,3-triazole-linked bispyridinium amide for selective sensing of H2PO4− by fluorescence and gel formation. European Journal of Organic Chemistry, 1311–1317. doi:10.1002/ejoc.201101240.
  • Yang, Z., Gu, H., Fu, D., Gao, P., Lam, J.K., and Xu, B. (2004). Enzymatic formation of supramolecular hydrogels. Advanced Materials, 16:1440–1444. doi:10.1002/(ISSN)1521-4095.
  • Yang, Z., and Xu, B. (2004). A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chemical Communications, 2424–2425. doi:10.1039/b408897b.
  • Yang, Z., Liang, G., Wang, L., and Xu, B. (2006). Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. Journal of the American Chemical Society, 128:3038–3043. doi:10.1021/ja057412y.
  • Webber, M.J., Newcomb, C.J., Bitton, R., and Stupp, S.I. (2011). Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter, 7:9665–9672. doi:10.1039/c1sm05610g.
  • Yang, Z., Ma, M., and Xu, B. (2009). Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation. Soft Matter, 5:2546–2548.
  • Koda, D., Maruyama, T., Minakuchi, N., Nakashima, K., and Goto, M. (2010). Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation. Chemical Communications, 46:979–981. doi:10.1039/B920359A.
  • Bremmer, S.C., Chen, J., McNeill, A.J., and Soellner, M.B. (2012). A general method for detecting protease activity via gelation and its application to artificial clotting. Chemical Communications, 48:5482–5484. doi:10.1039/c2cc31537h.
  • Bremmer, S.C., McNeil, A.J., and Soellner, M.B. (2014). Enzyme-triggered gelation: targeting proteases with internal cleavage sites. Chemical Communications, 50:1691–1693. doi:10.1039/c3cc48132h.
  • Toledano, S., Williams, R.J., Jayawarna, V., and Ulijn, R.V. (2006). Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. Journal of the American Chemical Society, 128:1070–1071. doi:10.1021/ja056549l.
  • Hughes, M., Birchall, L.S., Zuberi, K., Aitken, L.A., Debnath, S., Javid, N., and Ulijn, R.V. (2012). Differential supramolecular organization of Fmoc-dipeptides with hydrophilic terminal amino acid residues by biocatalytic self-assembly. Soft Matter, 8:11565–11574. doi:10.1039/c2sm26092a.
  • Yang, Z., Ho, P.L., Liang, G., Chow, K.H., Wang, Q., Cao, Y., Guo, Z., and Xu, B. (2007). Using β-lactamase to trigger supramolecular hydrogelation. Journal of the American Chemical Society, 129:266–267. doi:10.1021/ja0675604.
  • Ulijn, R.V. (2006). Enzyme-responsive materials: A new class of smart biomaterials. Journal of Materials Chemistry, 16:2217–2225. doi:10.1039/b601776m.
  • Yang, Z., Liang, G., and Xu, B. (2008). Enzymatic hydrogelation of small molecules. Accounts of Chemical Research, 41:315–326. doi:10.1021/ar7001914.
  • Gao, Y., Yang, Z., Kuang, Y., Ma, M.L., Li, J., Zhao, F., and Xu, B. (2010). Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers (Peptide Science), 94:19–31. doi:10.1002/bip.21321.
  • Williams, R.J., Mart, R.J., and Ulijn, R.V. (2010). Exploiting biocatalysis in peptide self-assembly. Biopolymers (Peptide Science), 94:107–117. doi:10.1002/bip.21346.
  • Saez, J.A., Escuder, B., and Miravet, J.F. (2010). Supramolecular hydrogels for enzymatically triggered self-immolative drug delivery. Tetrahedron, 66:2614–2618. doi:10.1016/j.tet.2010.02.033.
  • Zhang, Y., Kuang, Y., Gao, Y., and Xu, B. (2011). Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels. Langmuir, 27:529–537. doi:10.1021/la1020324.
  • Williams, R.J., Hall, T.E., Glattauer, V., White, J., Pasic, P.J., Sorensen, A.B., Waddington, L., McLean, K.M., Currie, P.D., and Hartley, P.G. (2011). The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials, 32:5304–5310. doi:10.1016/j.biomaterials.2011.03.078.
  • Wang, Q., Yang, Z., Gao, Y., Ge, W., Wang, L., and Xu, B. (2008). Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter, 4:550–553. doi:10.1039/b715439a.
  • Xu, T., Liang, C., Ji, S., Ding, D., Kong, D., Wang, L., and Yang, Z. (2016). Surface-induced hydrogelation for fluorescence and naked-eye detections of enzyme activity in blood. Analytical Chemistry, 88:7318–7323. doi:10.1021/acs.analchem.6b01660.
  • Kubinyl, M., Pal, K., Baranyal, P., Grofcsik, A., Bitter, I., and Grun, A. (2004). Absorption, fluorescence, and CD spectroscopic study of chiral recognition by a binaphthyl-derived chromogenic calixcrown host. Chirality, 16:174–179. doi:10.1002/chir.20003.
  • Liu, H.L., Peng, Q., Wu, Y.D., Chen, D., Hou, X.L., Sabat, M., and Pu, L. (2010). Highly enantioselective recognition of structurally diverse α-hydroxycarboxylic acids using a fluorescent sensor. Angewandte Chemie International Edition, 49:602–606. doi:10.1002/anie.200904889.
  • Monteagudo, E., Virgili, A., Parella, T., and Perez-Trujillo, M. (2017). Chiral recognition by dissolution DNP NMR spectroscopy of 13C-labeled DL-methionine. Analytical Chemistry, 89:4939–4944. doi:10.1021/acs.analchem.7b00156.
  • Zheng, Y.S., Ran, S.Y., Hu, Y.J., and Liu, X.X. (2009). Enantioselective self-assembly of chiral calyx[4]arene acid with amines. Chemical Communications, 1121–1123. doi:10.1039/b817974c.
  • Tripathi, A., Kumar, A., and Pandey, P.S. (2012). Visual chiral recognition of mandelic acid and α-amino acid derivatives by enantioselective gel formation and precipitation. Tetrahedron Letters, 53:5745–5748. doi:10.1016/j.tetlet.2012.08.025.
  • Sajisha, V.S., and Maitra, U. (2014). Remarkable isomer-selective gelation of aromatic solvents by a polymorph of a urea-linked bile acid-amino acid conjugate. RSC Advances, 4:43167–43171. doi:10.1039/C4RA08957J.
  • Burks, R.M., and Hage, D.S. (2009). Current trends in the detection of peroxide-based explosives. Analytical and Bioanalytical Chemistry, 395:301–313. doi:10.1007/s00216-009-2968-5.
  • Salinas, Y., Martinez-Manez, R., Marcos, M.D., Sancenon, F., Costero, A.M., Parra, M., and Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 41:1261–1296. doi:10.1039/c1cs15173h.
  • Kangas, M.J., Burks, R.M., Atwater, J., Lukowicz, R.M., Williams, P., and Holmes, A.E. (2017). Colorimetric sensor arrays for the detection and identification of chemical weapons and explosives. Critical Reviews in Analytical Chemistry, 47:138–153. doi:10.1080/10408347.2016.1233805.
  • Chen, J., Wu, W., and McNeil, A.J. (2012). Detecting a peroxide-based explosive via molecular gelation. Chemical Communications, 48:7310–7312. doi:10.1039/c2cc33486k.
  • Menger, F.M., and Venkatasubban, K.S. (1978). A carbon-13 nuclear magnetic resonance study of dibenzoylcystine gels. The Journal of Organic Chemistry, 43:3413–3414. doi:10.1021/jo00411a041.
  • Menger, F.M., and Caran, K.L. (2000). Anatomy of a gel. Amino acid derivatives that rigidify water at submillimolar concentrations. Journal of the American Chemical Society, 122:11679–11691. doi:10.1021/ja0016811.
  • Chen, J., and McNeil, A.J. (2008). Analyte-triggered gelation: initiating self-assembly via oxidation-induced planarization. Journal of the American Chemical Society, 130:16496–16497. doi:10.1021/ja807651a.
  • Zhang, J., Ou, C., Shi, Y., Wang, L., Chen, M., and Yang, Z. (2014). Visualized detection of melamine in milk by supramolecular hydrogelators. Chemical Communications, 50:12873–12876. doi:10.1039/C4CC05826G.
  • Fang, W., Liu, C., Yu, F., Liu, Y., Li, Z., Chen, L., Bao, X., and Tu, T. (2016). Macroscopic and fluorescent discrimination of adenosine triphosphate via selective metallo-hydrogel formation: a visual, practical, and reliable rehearsal toward cellular imaging. ACS Applied Materials & Interfaces, 8:20583–20590. doi:10.1021/acsami.6b05804.
  • Jia, L., Yin, J., Guo, X., Cao, G., Tian, X., Zhu, B., and Pu, L. (2017). A chiral BINOL-based gemini amphiphilic gelator and its specific discrimination of native arginine by gelation with water. Soft Matter, 13:5453–5462. doi:10.1039/c7sm01156c.
  • Steed, J.W. (2006). A modular approach to anion binding podands: adaptability in design and synthesis leads to adaptability in properties. Chemical Communications, 2637–2649. doi:10.1039/b601511e.
  • Maeda, H. (2008). Anion-responsive supramolecular gels. Chemistry – A European Journal, 14:11274–11282. doi:10.1002/chem.200801333.
  • Steed, J.W. (2010). Anion-tuned supramolecular gels: A natural evolution from urea supramolecular chemistry. Chemical Society Reviews, 39:3686–3699. doi:10.1039/b926219a.
  • Yang, H., Yi, T., Zhou, Z., Zhou, Y., Wu, J., Xu, M., Li, F., and Huang, C. (2007). Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir, 23:8224–8230. doi:10.1021/la7005919.
  • Wang, C., Zhang, D., and Zhu, D. (2007). A chiral low-molecular-weight gelator based on binaphthalene with two urea moieties: modulation of the CD spectrum after gel formation. Langmuir, 23:1478–1482. doi:10.1021/la062621x.
  • Yamanaka, M., Nakamura, T., Nakagawa, T., and Itagaki, H. (2007). Reversible sol-gel transition of a tris-urea gelator that responds to chemical stimuli. Tetrahedron Letters, 48:8990–8993. doi:10.1016/j.tetlet.2007.10.090.
  • Teng, M., Kuang, G., Jia, X., Gao, M., Li, Y., and Wei, Y. (2009). Glycine-glutamic-acid-based organogelators and their fluoride anion responsive properties. Journal Materials of Chemistry, 19:5648–5654. doi:10.1039/b904263f.
  • Dzolic, Z., Cametti, M., Cort, A.D., Mandolini, L., and Zinic, M. (2007). Fluoride-responsive organogelators based on oxalamide-derived anthraquinone. Chemical Communications, 3535–3537. doi:10.1039/b707466b.
  • Kim, T.H., Kwon, N.Y., and Lee, T.S. (2010). Synthesis of organogelling, fluoride ion-responsive, cholesteryl-based benzoxazole containing intra- and intermolecular hydrogen-bonding sites. Tetrahedron Letters, 51:5596–5600. doi:10.1016/j.tetlet.2010.08.053.
  • Liu, Y., Wang, Y., Jin, L., Chen, T., and Yin, B. (2016). MPTTF-containing tripeptide-based organogels: receptor for 2,4,6-trinitrophenol and multiple stimuli-responsive properties. Soft Matter, 12:934–945. doi:10.1039/c5sm02462e.
  • Li, X., Zhang, Y., Chen, A., Zhang, B., Zhang, B., and Song, J. (2017). A ferrocene-based organogel with multi-stimuli properties and applications in naked-eye recognition of F− and Al3+. RSC Advances, 7:37105–37111. doi:10.1039/C7RA06722D.
  • Zhang, Y.M., Lin, Q., Wei, T.B., Qin, X.P., and Li, Y. (2009). A novel smart organogel which could allow a two channel anion response by proton controlled reversible sol-gel transition and color changes. Chemical Communications, 6074–6076. doi:10.1039/b911125e.
  • Rajamalli, P., and Prasad, E. (2011). Low molecular weight fluorescent organogel for fluoride ion detection. Organic Letters, 13:3714–3717.
  • Rajamalli, P., and Prasad, E. (2012). Non-amphiphilic pyrene cored poly(aryl ether) dendron based gels: tunable morphology, unusual solvent effects on the emission and fluoride ion detection by the self-assembled superstructures. Soft Matter, 8:8896–8903. doi:10.1039/c2sm26151k.
  • Ghosh, K., and Pati, C. (2016). Aryl ethers coupled pyridoxal as supramolecular gelator for selective sensing of F−. Tetrahedron Letters, 57:5469–5474. doi:10.1016/j.tetlet.2016.10.089.
  • Liu, J.W., Yang, Y., Chen, C.F., and Ma, J.T. (2010). Novel anion-tuning supramolecular gels with dual-channel response: reversible sol-gel transition and color changes. Langmuir, 26:9040–9044. doi:10.1021/la904888d.
  • Bai, B., Ma, J., Wei, J., Song, J., Wang, H., and Li, M. (2014). A simple structural hydrazide-based gelator as a fluoride ion colorimetric sensor. Organic & Biomolecular Chemistry, 12:3478–3483. doi:10.1039/c4ob00056k.
  • Xing, L.B., Yang, B., Wang, X.J., Wang, J.J., Chen, B., Wu, Q., Peng, H.X., Zhang, L.P., Tung, C.H., and Wu, L.Z. (2013). Reversible sol-to-gel transformation of uracil gelators: specific colorimetric and fluorimetric sensor for fluoride ions. Langmuir, 29:2843–2848. doi:10.1021/la304920j.
  • Liu, Z.X., Sun, Y., Feng, Y., Chen, H.,., He, Y.M., and Fan, Q.H. (2016). Halogen-bonding for visual chloride ion sensing: A case study using supramolecular poly(aryl ether) dendritic organogel systems. Chemical Communications, 52:2269–2272. doi:10.1039/C5CC09082B.
  • Chen, X., Huang, Z., Chen, S.Y., Li, K., Yu, X.Q., and Pu, L. (2010). Enantioselective gel collapsing: A new means of visual chiral sensing. Journal of the American Chemical Society, 132:7297–7299. doi:10.1021/ja102480t.
  • Tu, T., Fang, W., Bao, X., Li, X., and Dotz, K.H. (2011). Visual chiral recognition through enantioselective metallogel collapsing: synthesis, characterization, and application of platinum-steroid low-molecular-mass gelators. Angewandte Chemie International Edition, 50:6601–6605.
  • Zhang, X., Li, H., Zhang, X., An, M., Fang, W., and Yu, H. (2017). Visual chiral recognition of 1,1ʹ-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator. Frontiers Chemical Sciences Engineering, 11:231–237.
  • Mukhopadhyay, P., Iwashita, Y., Shirakawa, M., Kawano, S., Fujita, N., and Shinkai, S. (2006). Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix. Angewandte Chemie International Edition, 45:1592–1595.
  • Saez, J.A., Escuder, B., and Miravet, J.F. (2010). Selective catechol-triggered supramolecular gel disassembly. Chemical Communications, 46:7996–7998.
  • Fang, W., Liu, X., Lu, Z., and Tu, T. (2014). Photoresponsive metallo-hydrogels based on visual discrimination of the positional isomers through selective thixotropic gel collapse. Chemical Communications, 50:3313–3316.
  • Fang, W., Liu, C., Chen, J., Lu, Z., Li, Z.M., Bao, X., and Tu, T. (2015). The electronic effects of ligands on metal-coordination geometry: A key role in the visual discrimination of dimethylaminopyridine and its application towards chemo-switch. Chemical Communications, 51:4267–4270.
  • Kim, T.H., Kim, D.G., Lee, M., and Lee, T.S. (2010). Synthesis of reversible fluorescent organogel containing 2-(2ʹ-hydroxyphenyl)benzoxazole: fluorescence enhancement upon gelation and detecting property for nerve gas simulant. Tetrahedron, 66:1667–1672.
  • Hiscock, J.R., Piana, F., Sambrook, M.R., Wells, N.J., Clark, A.J., Vincent, J.C., Busschaert, N., Brown, R.C.D., and Gale, P.A. (2013). Detection of nerve agent via perturbation of supramolecular gel formation. Chemical Communications, 49:9119–9121.
  • Hiscock, J.R., Sambrook, M.R., Ede, J.A., Wells, N.J., and Gale, P.A. (2015). Disruption of a binary organogel by the chemical warfare agent soman (GD) and common organophosphorous simulants. Journal of Materials Chemistry A, 3:1230–1234.
  • He, Y., Xu, M., Gao, R., Li, X., Li, F., Wu, X., Xu, D., Zeng, H., and Yuan, L. (2014). Two-component supramolecular gels derived from amphiphilic shape-persistent cyclo[6]aramides for specific recognition of native arginine. Angewandte Chemie International Edition, 53:11834–11839. doi:10.1002/anie.201407092.
  • He, T., Li, K., Wu, M.Y., Liao, Y.X., and Yu, X.Q. (2014). Visual detection of amino acids by supramolecular gel collapse. RSC Advances, 4:2119–2123.
  • Zhang, Y., Gu, H., Yang, Z., and Xu, B. (2003). Supramolecular hydrogels respond to ligand-receptor interaction. Journal of the American Chemical Society, 125:13680–13681. doi:10.1021/ja036817k.
  • Qiu, Z., Yu, H., Li, J., Wang, Y., and Zhang, Y. (2009). Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand-receptor interaction. Chemical Communications, 3342–3344. doi:10.1039/b822840j.
  • Ikeda, M., Tanida, T., Yoshii, T., and Hamachi, I. (2011). Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Advanced Materials, 23:2819–2822. doi:10.1002/adma.201004658.
  • Yoshii, T., Onogi, S., Shigemitsu, H., and Hamachi, I. (2015). Chemically reactive hydrogel coupled with a signal amplification for enhanced analyte sensitivity. Journal of the American Chemical Society, 137:3360–3365. doi:10.1021/ja5131534.
  • Xu, X.D., Lin, B.B., Feng, J., Wang, Y., Cheng, S.X., Zhang, X.Z., and Zhuo, R.X. (2012). Biological glucose metabolism regulated peptide self-assembly as a simple visual biosensor for glucose detection. Macromolecular Rapid Communications, 33:426–431. doi:10.1002/marc.201100689.
  • Zhou, C., Gao, W., Yang, K., Xu, L., Ding, J., Chen, J., Liu, M., Huang, X., Wang, S., and Wu, H. (2013). A novel glucose/pH responsive low-molecular-weight organogel of easy recycling. Langmuir, 29:13568–13575. doi:10.1021/la4033578.
  • Mamada, M., Minami, T., Katagiri, H., Omiya, T., and Tokito, S. (2017). One-step, green synthesis of a supramolecular organogelator based on mellitic triimide for the recognition of aromatic compounds. Chemical Communications, 53:8834–8837. doi:10.1039/C7CC04876A.
  • Adhia, Y.J., Schloemer, T.H., Perez, M.T., and McNeil, A.J. (2012). Using polymeric additives to enhance molecular gelation: impact of poly(acrylic acid) on pyridine-based gelators. Soft Matter, 8:430–434. doi:10.1039/C1SM06580G.
  • Dijkman, W.P., Gonzalo, G., Mattevi, A., and Fraaije, M.W. (2013). Flavoprotein oxidases: classification and applications. Applied Microbiology and Biotechnology, 97:5177–5188. doi:10.1007/s00253-013-4925-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.