521
Views
12
CrossRef citations to date
0
Altmetric
Articles

Fourier-transform rheology of unvulcanized styrene butadiene rubber filled with increasingly silanized silica

, &
Pages 269-282 | Received 21 Jun 2018, Accepted 19 Sep 2018, Published online: 05 Nov 2018

References

  • Leblanc, J.L. (2010) Filled Polymers – Science and Industrial Applications; CRC Press: Boca Raton, p. 25, 141.
  • Castellano, M., Conzatti, L., Turturro, A., Costa, G., and Busca, G. (2007) Influence of the silane modifiers on the surface thermodynamic characteristics and dispersion of the silica into elastomer compounds. Journal of Physical Chemistry B, 111:4495−4502. doi:10.1021/jp0702144.
  • Stockelhuber, K.W., Svistkov, A.S., Pelevin, A.G., and Heinrich, G. (2001) Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules, 44:4366−4381.
  • Tang, Z., Huang, J., Wu, X., Guo, B., Zhang, L., and Liu, F. (2015) Interface engineering toward promoting silanization by ionic liquid for high-performance rubber/silica composites. Industrial and Engineering Chemistry Research, 54:10747−10756. doi:10.1021/acs.iecr.5b03146.
  • Limper, A. (2012) Mixing of Rubber Compounds; Carl Hanser Verlag: Munich, p. 101–103.
  • Leblanc, J.L. (2002) Rubber-filler interactions and rheological properties in filled compounds. Progress in Polymer Science, 27:627−687. doi:10.1016/S0079-6700(01)00040-5.
  • Payne, A.R. (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. Journal of Applied Polymer Science, 6:57−63.
  • Wolff, S., and Wang, M.J. (1993) Carbon Black Reinforcement of Elastomers; Marcel Dekker: New York, p. 299.
  • Dealy, J.M., and Wissbrun, K.F. (1999) Melt Rheology and its Role in Plastics Processing: Theory and Applications; Kluwer Academic Publishers: Dordrent, The Netherlands..
  • Wilhelm, M., Maring, D., and Spiess, H.W. (1998) Fourier-transform rheology. Rheologica Acta, 37:399−405. doi:10.1007/s003970050126.
  • Wilhelm, M. (2002) Fourier-transform rheology. Macromolecular Materials and Engineering, 287:83−105. doi:10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B.
  • Ewoldt, R.H., Hosoi, A.E., and McKinley, G.H. (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 52:1427–1458. doi:10.1122/1.2970095.
  • Hyun, K., Wilhelm, M., Klein, C.O., Cho, K.S., Nam, J.G., Ahn, K.H., Lee, S.J., Ewoldt, R.H., and McKinley, G.H. (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 36:1697−1753. doi:10.1016/j.progpolymsci.2011.02.002.
  • Dötsch, T., Pollard, M., and Wilhelm, M. (2003) Kinetics of isothermal crystallization in isotactic polypropylene monitored with rheology and Fourier-transform rheology. Journal of Physics: Condensed Matter, 15:923–931.
  • Cziep, M.A., Abbasi, M., Heck, M., Arens, L., and Wilhelm, M. (2016) Effect of molecular weight, polydispersity, and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity 3Q0(ω) in MAOS. Macromolecules, 49:3566−3579. doi:10.1021/acs.macromol.5b02706.
  • Ahirwal, D., Palza, H., Schlatter, G., and Wilhelm, M. (2014) New way to characterize the percolation threshold of polyethylene and carbon nanotube polymer composites using Fourier transform (FT) rheology. Korea-Australia Rheology Journal, 26:319−326. doi:10.1007/s13367-014-0036-y.
  • Leblanc, J.L. (2012) Effect of temperature on dynamic rheological properties of uncured rubber materials in both the linear and the nonlinear viscoelastic domains. Journal of Applied Polymer Science, 126:408−422. doi:10.1002/app.37006.
  • Leblanc, J.L., Putman, M., and Pianhanuruk, E. (2011) A thorough study on the relationships between dispersion quality and viscoelastic properties in carbon black filled SBR compounds. Journal of Applied Polymer Science, 121:1096−1117. doi:10.1002/app.33793.
  • Leblanc, J.L., and Nijman, G. (2009) Engineering performance and material viscoelastic analyses along a compounding line for silica-based compounds, part 2: nonlinear viscoelastic analysis. Journal of Applied Polymer Science, 112:1128−1141. doi:10.1002/app.29515.
  • Schwab, L., Hojdis, N., Lacayo-Pineda, J., and Wilhelm, M. (2016) Fourier-transform rheology of unvulcanized, carbon black filled styrene butadiene rubber. Macromolecular Materials and Engineering, 301:457−468. doi:10.1002/mame.201500356.
  • Lacayo-Pineda, J. (2015) Filler Dispersion and Filler Networks. Encyclopedia of Polymeric Nanomaterials; Springer-Verlag: Berlin Heidelberg, p. 771–776.
  • Akcora, P., Liu, H., Kumar, S.K., Moll, J., Li, Y., Benicewicz, B.C., Schadler, L.S., Acehan, D., Panagiotopoulos, A.Z., Pryamitsyn, V., and Ganesan, V. (2009) Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nature Materials, 8:354–359. doi:10.1038/nmat2404.
  • ASTM Standard D7723-11. (2011) Standard Test Method for Rubber Property – Macro-Dispersion of Fillers in Compounds. Annual Book of ASTM Standards, Vol. 09.01.; ASTM International: West Conshohocken, PA, USA.
  • Blume, A., El-Roz, M., and Thibault-Starzyk, F. (2014) Infrared study of the silica/silane reaction. In 11th Rubber Fall Colloquium; Hannover, Germany.
  • Stöckelhuber, K.W., Das, A., Jurk, R., and Heinrich, G. (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer, 51:1954−1963. doi:10.1016/j.polymer.2010.03.013.
  • Wang, M.J. (1999) The role of filler networking in dynamic properties of filled rubber. Rubber Chemistry and Technology, 72:430−448. doi:10.5254/1.3538812.
  • Merger, D., Abbasi, M., Merger, J., Giacomin, A.J., Saengow, C., and Wilhelm, M. (2016) Simple scalar model and analysis for large amplitude oscillatory shear. Applied Rheology, 26:53809−53824.
  • Hoyle, D.M., Auhl, D., Harlen, O.G., Barroso, V.C., Wilhelm, M., and McLeish, T.C.B. (2014) Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts. Journal of Rheology, 58:969−997. doi:10.1122/1.4881467.
  • Wagner, M.H., Rolón-Garrido, V.H., Hyun, K., and Wilhelm, M. (2011) Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers. Journal of Rheology, 55:495−516. doi:10.1122/1.3553031.
  • Hyun, K., and Wilhelm, M. (2008) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules, 42:411−422.
  • Vittorias, I., Parkinson, M., Klimke, K., Debbaut, B., and Wilhelm, M. (2007) Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology, NMR and simulation using the Pom-Pom model. Rheologica Acta, 46:321−340.
  • Kraus, G. (1984) Mechanical losses in carbon-black filled rubbers. Journal of Applied Polymer Science: Applied Polymer Symposium, 39:75−92.
  • Nagaraja, S.M., Mujtaba, A., and Beiner, M. (2017) Quantification of different contributions to dissipation in elastomer nanoparticle composites. Polymer, 111:48−52. doi:10.1016/j.polymer.2017.01.011.
  • Kato, A., Ikeda, Y., Kasahara, Y., Shimanuki, J., Suda, T., Hasegawa, T., Sawabe, H., and Kohjiya, S. (2008) Optical transparency and silica network structure in cross-linked natural rubber as revealed by spectroscopic and three-dimensional transmission electron microscopy techniques. Journal of the Optical Society B, 25:1602−1615. doi:10.1364/JOSAB.25.001602.
  • Schneider, G.J., Fink, S.A., Rachel, R., and Goritz, D. (2005) Three-dimensional structure of precipitated silica as determined by electron tomography. Kautschuk und Gummi Kunstoffe, 58:461−463.
  • Ramier, J., Chazeau, L., Gauthier, C., Guy, L., and Bouchereau, M.N. (2006) Grafting of silica during the processing of silica‐filled SBR: comparison between length and content of the silane. Journal of Polymer Science Part B: Polymer Physics, 44:143−152. doi:10.1002/polb.20622.
  • Hentschke, R., Hager, J., and Hojdis, N.W. (2014) Molecular modeling approach to the prediction of mechanical properties of silica‐reinforced rubbers. Journal of Applied Polymer Science, 40806:1−9.
  • Hager, J., Hentschke, R., Hojdis, N.W., and Karimi-Varzaneh, H.A. (2015) Computer simulation of particle-particle interaction in a model polymer nanocomposite. Macromolecules, 48:9039−9049. doi:10.1021/acs.macromol.5b01864.
  • Qu, L., Yu, G., Xie, X., Wang, L., Li, J., and Zhao, Q. (2013) Effect of silane coupling agent on filler and rubber interaction of silica reinforced solution styrene butadiene rubber. Polymer Composites, 34:1575−1582. doi:10.1002/pc.22554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.