299
Views
20
CrossRef citations to date
0
Altmetric
Articles

Electro-mechanical instability modelling in elastomeric actuators: A second law of thermodynamics-based approach

ORCID Icon &
Pages 308-320 | Received 12 Oct 2018, Accepted 20 Mar 2019, Published online: 10 Apr 2019

References

  • Bustamante, R., Dorfmann, A., and Ogden, R. (2009) On electric body forces and maxwell stresses in nonlinearly electroelastic solids. International Journal of Engineering Science, 47(11):1131–1141. doi:10.1016/j.ijengsci.2008.10.010
  • Dorfmann, A., and Ogden, R. (2004) Nonlinear magnetoelastic deformations. The Quarterly Journal of Mechanics and Applied Mathematics, 57(4):599–622. doi:10.1093/qjmam/57.4.599
  • Kumar, D., and Sarangi, S. (2019) Electro-magnetostriction under large deformation: modeling with experimental validation. Mechanics of Materials, 128(1):1–10. doi:10.1016/j.mechmat.2018.10.001
  • Kumar, D., and Sarangi, S. (2018) Instability analysis of an electro-magneto-elastic actuator: A continuum mechanics approach. AIP Advances, 8(11):115314. doi:10.1063/1.5055793
  • Xia, J., Ying, Y., and Foulger, S.H. (2005) Electric-field-induced rejection-wavelength tuning of photonic-bandgap composites. Advanced Materials, 17(20):2463–2467. doi:10.1002/(ISSN)1521-4095
  • Kumar, D., and Sarangi, S. (2018) Data on the viscoelastic behavior of neoprene rubber. Data in Brief, 21:943–947. doi:10.1016/j.dib.2018.10.081
  • Ashley, S. (2003) Artificial muscles. Scientific American, 289(4):52–59. doi:10.1038/scientificamerican1003-52
  • Lu, T., Huang, J., Jordi, C., et al. (2012) Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter, 8(22):6167–6173. doi:10.1039/c2sm25692d
  • Lu, T., Cheng, S., Li, T., et al. (2016) Electromechanical catastrophe. International Journal of Applied Mechanics, 8(07):1640005. doi:10.1142/S1758825116400056
  • Goh, Y.F., Akbari, S., Khanh Vo, T.V., et al. (2018) Electrically-induced actuation of acrylic-based dielectric elastomers in excess of 500% strain. Soft Robotics, 5(6):675–684. doi:10.1089/soro.2017.0078
  • Koh, S.J.A., Keplinger, C., Kaltseis, R., et al. (2017) High-performance electromechanical transduction using laterally-constrained dielectric elastomers part i: actuation processes. Journal of the Mechanics and Physics of Solids, 105:81–94. doi:10.1016/j.jmps.2017.04.015
  • Suo, Z. (2010) Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23(6):549–578. doi:10.1016/S0894-9166(11)60004-9
  • Teh, Y.S., and Koh, S.J.A. (2016) Giant continuously-tunable actuation of a dielectric elastomer ring actuator. Extreme Mechanics Letters, 9:195–203. doi:10.1016/j.eml.2016.07.002
  • Volokh, K. (2012) On electromechanical coupling in elastomers. Journal of Applied Mechanics, 79(4):044507. doi:10.1115/1.4006057
  • Goulbourne, N.C. (2005) Electroelastic Modeling of Dielectric Elastomer Membrane Actuators.
  • Eringen, A.C., and Maugin, G.A. (2012) Electrodynamics of Continua I: Foundations and Solid Media; Springer Science & Business Media.
  • Stratton, J.A. (2007) Electromagnetic Theory; John Wiley & Sons.
  • Dorfmann, A., and Ogden, R. (2005) Nonlinear electroelasticity. Acta Mechanica, 174(3–4):167–183. doi:10.1007/s00707-004-0202-2
  • Kovetz, A. (2000) Electromagnetic Theory; Oxford University Press Oxford.
  • Pao, Y.H. Electromagnetic forces in deformable continua. In: In: Mechanics today. Volume 4. (A78-35706 14-70) New York, Pergamon Press, Inc., 1978, p. 209–305. NSF-supported research.; Vol. 4; 1978. p. 209–305.
  • Choi, H.S., Park, I.H., and Moon, W.K. (2009) On the physical meaning of maxwell stress tensor. The Transactions of the Korean Institute of Electrical Engineers, 58(4):725–734.
  • Rinaldi, C., and Brenner, H. (2002) Body versus surface forces in continuum mechanics: is the maxwell stress tensor a physically objective cauchy stress? Physical Review E, 65(3):036615. doi:10.1103/PhysRevE.65.036615
  • Zhao, X., and Suo, Z. (2008) Electrostriction in elastic dielectrics undergoing large deformation. Journal of Applied Physics, 104(12):123530. doi:10.1063/1.3031483
  • Zhao, X., Hong, W., and Suo, Z. (2007) Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B, 76(13):134113. doi:10.1103/PhysRevB.76.134113
  • Darijani, H., and Naghdabadi, R. (2010) Hyperelastic materials behavior modeling using consistent strain energy density functions. Acta Mechanica, 213(3–4):235–254. doi:10.1007/s00707-009-0239-3
  • Gent, A. (1996) A new constitutive relation for rubber. Rubber Chemistry and Technology, 69(1):59–61. doi:10.5254/1.3538357
  • Wissler, M., and Mazza, E. (2007) Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators A: Physical, 138(2):384–393. doi:10.1016/j.sna.2007.05.029
  • Wissler, M., and Mazza, E. (2005) Modeling of a pre-strained circular actuator made of dielectric elastomers. Sensors and Actuators A: Physical, 120(1):184–192. doi:10.1016/j.sna.2004.11.015
  • Zhu, J., Kollosche, M., Lu, T., et al. (2012) Two types of transitions to wrinkles in dielectric elastomers. Soft Matter, 8(34):8840–8846. doi:10.1039/c2sm26034d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.