451
Views
10
CrossRef citations to date
0
Altmetric
Articles

Enhancement of thermal conductivity and tensile strength of liquid silicone rubber by three-dimensional alumina network

ORCID Icon, , &
Pages 297-307 | Received 28 Nov 2018, Accepted 10 Mar 2019, Published online: 03 Apr 2019

References

  • Deng, H., Lin, L., Ji, M., Zhang, S., Yang, M., and Fu, Q. (2014). Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 39:627–655. doi:10.1016/j.progpolymsci.2013.07.007
  • Abbasi, F., Mirzadeh, H., and Katbab, A.A. (2001). Modification of polysiloxane polymers for biomedical applications: a review. Polymer International, 50:1279–1287. doi:10.1002/pi.783
  • Gu, J., Meng, X., Tang, Y., Li, Y., Zhuang, Q., and Kong, J. (2017). Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Composites Part A: Applied Science and Manufacturing, 92:27–32. doi:10.1016/j.compositesa.2016.11.002
  • Watari, K., and Shinde, S.L. (2011). High thermal conductivity materials. MRS Bulletin, 26:440–444. doi:10.1557/mrs2001.113
  • Pang, Z., Gu, X., Wei, Y., Yang, R., and Dresselhaus, M.S. (2017). Bottom-up design of three-dimensional carbon-honeycomb with superb specific strength and high thermal conductivity. Nano Letters, 17:179–185. doi:10.1021/acs.nanolett.6b03711
  • Dasgupta, A., Rajukumar, L.P., Rotella, C., Lei, Y., and Terrones, M. (2017). Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications. Nano Today, 12:116–135. doi:10.1016/j.nantod.2016.12.011
  • Yang, Y., Kim, N.D., Varshney, V., Sihn, S., Li, Y., Roy, A.K., Tour, J.M., and Lou, J. (2017). In situ mechanical investigation of carbon nanotube-graphene junction in three-dimensional carbon nanostructures. Nanoscale, 9:2916–2924. doi:10.1039/C6NR09897E
  • Burger, N., Laachachi, A., Ferriol, M., Lutz, M., Toniazzo, V., and Ruch, D. (2016). Review of thermal conductivity in composites: mechanisms, parameters and theory. Progress in Polymer Science, 61:1–28. doi:10.1016/j.progpolymsci.2016.05.001
  • Cao, X., Yin, Z., and Zhang, H. (2014). Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ Science, 7:1850–1865.
  • Xiao, Y.-J., Wang, W.-Y., Lin, T., Chen, X.-J., Zhang, Y.-T., Yang, J.-H., Wang, Y., and Zhou, Z.-W. (2016). Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidene fluoride)/Boron nitride composites achieved by adding a few carbon nanotubes. The Journal of Physical Chemistry C, 120:6344–6355. doi:10.1021/acs.jpcc.5b12651
  • Dittrich, B., Wartig, K.-A., Hofmann, D., Mülhaupt, R., and Schartel, B. (2013). Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polymer Degradation and Stability, 98:1495–1505. doi:10.1016/j.polymdegradstab.2013.04.009
  • Balandin, A.A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10:569–581. doi:10.1038/nmat3084
  • Yu, J., Huang, X., Wu, C., Wu, X., Wang, G., and Jiang, P. (2012). Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer, 53:471–480. doi:10.1016/j.polymer.2011.12.040
  • Abad, B., Maiz, J., Ruiz-Clavijo, A., Caballero-Calero, O., and Martin-Gonzalez, M. (2016). Tailoring thermal conductivity via three-dimensional porous alumina. Scientific Reports, 6:38595. doi:10.1038/srep38595
  • Zhang, Y., Yu, W., Zhang, L., Yin, J., Wang, J., and Xie, H. (2017). Thermal conductivity and mechanical properties of low-density silicone rubber filled with Al2O3 and graphene nanoplatelets. Journal of Thermal Science and Engineering Applications, 10:011014. doi:10.1115/1.4036797
  • Sato, K., Ijuin, A., and Hotta, Y. (2015). Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceramics International, 41:10314–10318. doi:10.1016/j.ceramint.2015.04.088
  • Song, P., Wang, C., Chen, L., Zheng, Y., Liu, L., Wu, Q., Huang, G., Yu, Y., and Wang, H. (2017). Thermally stable, conductive and flame-retardant nylon 612 composites created by adding two-dimensional alumina platelets. Composites Part A: Applied Science and Manufacturing, 97:100–110. doi:10.1016/j.compositesa.2017.02.029
  • Yao, Y., Zeng, X., Guo, K., Sun, R., and Xu, J.-B. (2015). The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 69:49–55. doi:10.1016/j.compositesa.2014.10.027
  • Gao, Z., and Zhao, L. (2015). Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles. Materials & Design (1980–2015), 66:176–182. doi:10.1016/j.matdes.2014.10.052
  • Guan, F.-L., Gui, C.-X., Zhang, H.-B., Jiang, Z.-G., Jiang, Y., and Yu, -Z.-Z. (2016). Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide. Composites Part B: Engineering, 98:134–140. doi:10.1016/j.compositesb.2016.04.062
  • Kuang, Z., Chen, Y., Lu, Y., Liu, L., Hu, S., Wen, S., Mao, Y., and Zhang, L. (2015). Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small, 11:1655–1659. doi:10.1002/smll.v11.14
  • Hung, C.-C., Hurst,, J., Santiago, D., Lizcano, M., and Kelly, M. (2017). Highly thermally conductive hexagonal boron nitride/alumina composite made from commercial hexagonal boron nitride. Journal of the American Ceramic Society, 100:515–519. doi:10.1111/jace.2017.100.issue-2
  • Gu, J., Liang, C., Dang, J., Dong, W., and Zhang, Q. (2016). Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Advances, 6:35809–35814. doi:10.1039/C6RA04513H
  • Nautiyal, P., Loganathan, A., Agrawal, R., Boesl, B., Wang, C., and Agarwal, A. (2016). Oxidative unzipping and transformation of high aspect ratio boron nitride nanotubes into “White Graphene Oxide” platelets. Scientific Reports, 6:29498. doi:10.1038/srep29498
  • Yao, Y., Zeng, X., Wang, F., Sun, R., Xu, J.-B., and Wong, C.-P. (2016). Significant enhancement of thermal conductivity in bioinspired freestanding boron nitride papers filled with graphene oxide. Chemistry of Materials, 28:1049–1057. doi:10.1021/acs.chemmater.5b04187
  • Muratov, D.S., Kuznetsov, D.V., Il’inykh, I.A., Burmistrov, I.N., and Mazov, I.N. (2015). Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Composites Science and Technology, 111:40–43. doi:10.1016/j.compscitech.2015.03.003
  • Kim, K., Ju, H., and Kim, J. (2016). Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement. Composites Science and Technology, 123:99–105. doi:10.1016/j.compscitech.2015.12.004
  • Hu, M., Feng, J., and Ng, K.M. (2015). Thermally conductive PP/AlN composites with a 3-D segregated structure. Composites Science and Technology, 110:26–34. doi:10.1016/j.compscitech.2015.01.019
  • Cui, X., Ding, P., Zhuang, N., Shi, L., Song, N., and Tang, S. (2015). Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl Mater Interfaces, 7:19068–19075. doi:10.1021/acsami.5b04444
  • Shtein, M., Nadiv, R., Buzaglo, M., Kahil, K., and Regev, O. (2015). Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chemistry of Materials, 27:2100–2106. doi:10.1021/cm504550e
  • Gu, J., Yang, X., Lv, Z., Li, N., Liang, C., and Zhang, Q. (2016). Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. International Journal of Heat and Mass Transfer, 92:15–22. doi:10.1016/j.ijheatmasstransfer.2015.08.081
  • Shahil, K.M.F., and Balandin, A.A. (2012). Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Letters, 12:861–867. doi:10.1021/nl203906r
  • Yu, W., Xie, H., Chen, L., Wang, M., and Wang, W. (2017). Synergistic thermal conductivity enhancement of PC/ABS composites containing alumina/magnesia/graphene nanoplatelets. Polymer Composites, 38:2221–2227. doi:10.1002/pc.v38.10
  • Zhou, W., Qi, S., Tu, C., Zhao, H., Wang, C., and Kou, J. (2007). Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of Applied Polymer Science, 104:1312–1318. doi:10.1002/(ISSN)1097-4628
  • O, Y.-T., Kim, S.-W., and Shin, D.-C. (2008). Fabrication and synthesis of α-alumina nanopowders by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313–314:415–418. doi:10.1016/j.colsurfa.2007.04.123
  • Li, G.-C., Liu, Y.-Q., Guan, -L.-L., Hu, X.-F., and Liu, C.-G. (2012). Meso/macroporous γ-Al2O3 fabricated by thermal decomposition of nanorods ammonium aluminium carbonate hydroxide. Materials Research Bulletin, 47:1073–1079. doi:10.1016/j.materresbull.2011.12.026
  • Li, J., Li, W., Nai, X., Bian, S., Liu, X., and Wei, M. (2009). Synthesis and formation of alumina whiskers from hydrothermal solution. Journal of Materials Science, 45:177–181. doi:10.1007/s10853-009-3913-x
  • Yang, N., and Yue, W. (2000) The handbook of inorganic metalloid materials atlas, Wuhan University of Technology. Press:Wuhan, China.
  • Zhang, H.-B., Zheng, W.-G., Yan, Q., Yang, Y., Wang, J.-W., Lu, Z.-H., Ji, G.-Y., and Yu, -Z.-Z. (2010). Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 51:1191–1196. doi:10.1016/j.polymer.2010.01.027
  • Kyrylyuk, A.V., and van der Schoot, P. (2008). Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proceedings of the National Academy of Sciences, 105:8221–8226. doi:10.1073/pnas.0711449105
  • Yu, A., Ramesh, P., Sun, X., Bekyarova, E., Itkis, M.E., and Haddon, R.C. (2008). Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites. Advanced Materials, 20:4740–4744. doi:10.1002/adma.v20:24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.