94
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of the shear field on the conductive percolated network formation in a nanoparticle filled polymer nanocomposites

, , , , &
Pages 128-139 | Received 06 Oct 2019, Accepted 02 Dec 2019, Published online: 13 Dec 2019

References

  • Guo, B.; Tang, Z.; Zhang, L. Transport Performance in Novel Elastomer Nanocomposites: Mechanism, Design and Control. Prog. Polym. Sci. 2016, 61, 29–66. DOI: 10.1016/j.progpolymsci.2016.06.001.
  • Lan, Y.; Liu, H.; Cao, X.; Zhao, S.; Dai, K.; Yan, X.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Electrically Conductive Thermoplastic Polyurethane/polypropylene Nanocomposites with Selectively Distributed Graphene. Polymer. 2016, 97, 11–19. DOI: 10.1016/j.polymer.2016.05.017.
  • Zhang, Q.; Wang, J.; Zhang, B.-Y.; Guo, B.-H.; Yu, J.; Guo, Z.-X. Improved Electrical Conductivity of Polymer/carbon Black Composites by Simultaneous Dispersion and Interaction-induced Network Assembly. Compos. Sci. Technol. 2019, 179, 106–114. DOI: 10.1016/j.compscitech.2019.05.008.
  • Balberg, I.;. Recent Developments in Continuum Percolation. Philos. Mag. B 1987, 56, 991–1003. DOI: 10.1080/13642818708215336.
  • Ren, D.; Zheng, S.; Huang, S.; Liu, Z.; Yang, M. Effect of the Carbon Black Structure on the Stability and Efficiency of the Conductive Network in Polyethylene Composites. J. Appl. Polym. Sci. 2013, 129, 3382–3389. DOI: 10.1002/app.38606.
  • Hilarius, K.; Lellinger, D.; Alig, I.; Villmow, T.; Pegel, S.; Pötschke, P. Influence of Shear Deformation on the Electrical and Rheological Properties of Combined Filler Networks in Polymer Melts: Carbon Nanotubes and Carbon Black in Polycarbonate. Polymer. 2013, 54, 5865–5874. DOI: 10.1016/j.polymer.2013.08.010.
  • Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q. Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials. Prog. Polym. Sci. 2014, 39, 627–655. DOI: 10.1016/j.progpolymsci.2013.07.007.
  • Zeng, Y.; Liu, P.; Du, J.; Zhao, L.; Ajayan, P. M.; Cheng, H.-M. Increasing the Electrical Conductivity of Carbon Nanotube/polymer Composites by Using Weak Nanotube–Polymer Interactions. Carbon. 2010, 48, 3551–3558. DOI: 10.1016/j.carbon.2010.05.053.
  • Bréchet, Y.; Cavaillé, J. Y.; Chabert, E.; Chazeau, L.; Dendievel, R.; Flandin, L.; Gauthier, C. Polymer Based Nanocomposites: Effect of Filler-Filler and Filler-Matrix Interactions. Adv. Eng. Mater. 2001, 3, 571–577. DOI: 10.1002/1527-2648(200108)3:8<571::AID-ADEM571>3.0.CO;2-M.
  • Li, Y.; Zhu, J.; Wei, S.; Ryu, J.; Wang, Q.; Sun, L.; Guo, Z. Poly(propylene) Nanocomposites Containing Various Carbon Nanostructures. Macromol. Chem. Phys. 2011, 212, 2429–2438. DOI: 10.1002/macp.201100364.
  • White, S. I.; Mutiso, R. M.; Vora, P. M.; Jahnke, D.; Hsu, S.; Kikkawa, J. M.; Li, J.; Fischer, J. E.; Winey, K. I. Electrical Percolation Behavior in Silver Nanowire-Polystyrene Composites: Simulation and Experiment. Adv. Funct. Mater. 2010, 20, 2709–2716. DOI: 10.1002/adfm.201000451.
  • Ma, P.-C.; Liu, M.-Y.; Zhang, H.; Wang, S.-Q.; Wang, R.; Wang, K.; Wong, Y.-K.; Tang, B.-Z.; Hong, S.-H.; Paik, K.-W.; et al. Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black. ACS Appl. Mater. Interfaces. 2009, 1, 1090–1096. DOI: 10.1021/am9000503.
  • Liu, X.; Krückel, J.; Zheng, G.; Schubert, D. W. Mapping the Electrical Conductivity of Poly(methyl methacrylate)/Carbon Black Composites Prior to and after Shear. ACS Appl. Mater. Interfaces. 2013, 5, 8857–8860. DOI: 10.1021/am4031517.
  • Liu, X.; Krückel, J.; Zheng, G.; Schubert, D. W. Electrical Conductivity Behaviour of Sheared Poly(methyl Methacrylate)/carbon Black Composites. Compos. Sci. Technol. 2014, 100, 99–104. DOI: 10.1016/j.compscitech.2014.06.005.
  • Skipa, T.; Lellinger, D.; Böhm, W.; Saphiannikova, M.; Alig, I. Influence of Shear Deformation on Carbon Nanotube Networks in Polycarbonate Melts: Interplay between Build-up and Destruction of Agglomerates. Polymer. 2010, 51, 201–210. DOI: 10.1016/j.polymer.2009.11.047.
  • Bauhofer, W.; Schulz, S. C.; Eken, A. E.; Skipa, T.; Lellinger, D.; Alig, I.; Tozzi, E. J.; Klingenberg, D. J. Shear-controlled Electrical Conductivity of Carbon Nanotubes Networks Suspended in Low and High Molecular Weight Liquids. Polymer. 2010, 51, 5024–5027. DOI: 10.1016/j.polymer.2010.09.013.
  • Ma, H. M.; Gao, X. L. A Three-dimensional Monte Carlo Model for Electrically Conductive Polymer Matrix Composites Filled with Curved Fibers. Polymer. 2008, 49, 4230–4238. DOI: 10.1016/j.polymer.2008.07.034.
  • Li, C.; Thostenson, E. T.; Chou, T.-W. Effect of Nanotube Waviness on the Electrical Conductivity of Carbon Nanotube-based Composites. Compos. Sci. Technol. 2008, 68, 1445–1452. DOI: 10.1016/j.compscitech.2007.10.056.
  • Ma, H. M.; Gao, X.-L.; Tolle, T. B. Monte Carlo Modeling of the Fiber Curliness Effect on Percolation of Conductive Composites. Appl. Phys. Lett. 2010, 96, 061910. DOI: 10.1063/1.3309590.
  • Kyrylyuk, A. V.; Hermant, M. C.; Schilling, T.; Klumperman, B.; Koning, C. E.; van der Schoot, P. Controlling Electrical Percolation in Multicomponent Carbon Nanotube Dispersions. Nat. Nanotechnol. 2011, 6, 364–369. DOI: 10.1038/nnano.2011.40.
  • Zhao, Y.; Byshkin, M.; Cong, Y.; Kawakatsu, T.; Guadagno, L.; De Nicola, A.; Yu, N.; Milano, G.; Dong, B. Self-assembly of Carbon Nanotubes in Polymer Melts: Simulation of Structural and Electrical Behaviour by Hybrid Particle-field Molecular Dynamics. Nanoscale. 2016, 8, 15538–15552. DOI: 10.1039/C6NR03304K.
  • Rahatekar, S. S.; Hamm, M.; Shaffer, M. S. P.; Elliott, J. A. Mesoscale Modeling of Electrical Percolation in Fiber-filled Systems. J. Chem. Phys. 2005, 123, 134702. DOI: 10.1063/1.2031147.
  • Ndoro, T. V. M.; Voyiatzis, E.; Ghanbari, A.; Theodorou, D. N.; Böhm, M. C.; Müller-Plathe, F. Interface of Grafted and Ungrafted Silica Nanoparticles with a Polystyrene Matrix: Atomistic Molecular Dynamics Simulations. Macromolecules. 2011, 44, 2316–2327. DOI: 10.1021/ma102833u.
  • Munaò, G.; Pizzirusso, A.; Kalogirou, A.; De Nicola, A.; Kawakatsu, T.; Müller-Plathe, F.; Milano, G. Molecular Structure and Multi-body Potential of Mean Force in Silica-polystyrene Nanocomposites. Nanoscale. 2018, 10, 21656–21670. DOI: 10.1039/C8NR05135F.
  • Meng, D.; Kumar, S. K.; Cheng, S.; Grest, G. S. Simulating the Miscibility of Nanoparticles and Polymer Melts. Soft Matter. 2013, 9, 5417–5427. DOI: 10.1039/c3sm50460c.
  • Jizhe, C.; Mohammad, N. Computational Analysis of Electrical Conduction in Hybrid Nanomaterials with Embedded Non-penetrating Conductive Particles. Model. Simul. Mat. Sci. Eng. 2016, 24, 065004. DOI: 10.1088/0965-0393/24/6/065004.
  • Du, F.; Fischer, J. E.; Winey, K. I. Effect of Nanotube Alignment on Percolation Conductivity in Carbon Nanotube/polymer Composites. Phys. Rev. B. 2005, 72, 121404. DOI: 10.1103/PhysRevB.72.121404.
  • Kwon, G.; Heo, Y.; Shin, K.; Sung, B. J. Electrical Percolation Networks of Carbon Nanotubes in a Shear Flow. Phys. Rev. E. 2012, 85, 011143. DOI: 10.1103/PhysRevE.85.011143.
  • Eken, A. E.; Tozzi, E. J.; Klingenberg, D. J.; Bauhofer, W. Combined Effects of Nanotube Aspect Ratio and Shear Rate on the Carbon Nanotube/polymer Composites. Polymer. 2012, 53, 4493–4500. DOI: 10.1016/j.polymer.2012.07.045.
  • Eken, A. E.; Tozzi, E. J.; Klingenberg, D. J.; Bauhofer, W. A Simulation Study on the Effects of Shear Flow on the Microstructure and Electrical Properties of Carbon Nanotube/polymer Composites. Polymer. 2011, 52, 5178–5185. DOI: 10.1016/j.polymer.2011.08.041.
  • Socher, R.; Krause, B.; Müller, M. T.; Boldt, R.; Pötschke, P. The Influence of Matrix Viscosity on MWCNT Dispersion and Electrical Properties in Different Thermoplastic Nanocomposites. Polymer. 2012, 53, 495–504. DOI: 10.1016/j.polymer.2011.12.019.
  • Menzer, K.; Krause, B.; Boldt, R.; Kretzschmar, B.; Weidisch, R.; Pötschke, P. Percolation Behaviour of Multiwalled Carbon Nanotubes of Altered Length and Primary Agglomerate Morphology in Melt Mixed Isotactic Polypropylene-based Composites. Compos. Sci. Technol. 2011, 71, 1936–1943. DOI: 10.1016/j.compscitech.2011.09.009.
  • Muller, M. T.; Krause, B.; Kretzschmar, B.; Potschke, P. Influence of Feeding Conditions in Twin-screw Extrusion of PP/MWCNT Composites on Electrical and Mechanical Properties. Compos. Sci. Technol. 2011, 71, 1535–1542. DOI: 10.1016/j.compscitech.2011.06.003.
  • Adohi, B. J.-P.; Mdarhri, A.; Prunier, C.; Haidar, B.; Brosseau, C. A Comparison between Physical Properties of Carbon Black-polymer and Carbon Nanotubes-polymer Composites. J. Appl. Phys. 2010, 108, 074108. DOI: 10.1063/1.3486491.
  • Park, S.-J.; Kim, J.-S. Role of Chemically Modified Carbon Black Surfaces in Enhancing Interfacial Adhesion between Carbon Black and Rubber in a Composite System. J. Colloid Interface Sci. 2000, 232, 311–316. DOI: 10.1006/jcis.2000.7160.
  • Papirer, E.; Lacroix, R.; Donnet, J. B. Chemical Modifications and Surface Properties of Carbon Blacks. Carbon. 1996, 34, 1521–1529. DOI: 10.1016/S0008-6223(96)00103-0.
  • Kremer, K.; Grest, G. S. Dynamics of Entangled Linear Polymer Melts:  A Molecular-dynamics Simulation. J. Chem. Phys. 1990, 92, 5057–5086. DOI: 10.1063/1.458541.
  • Chao, H.; Riggleman, R. A. Effect of Particle Size and Grafting Density on the Mechanical Properties of Polymer Nanocomposites. Polymer. 2013, 54, 5222–5229. DOI: 10.1016/j.polymer.2013.07.018.
  • Duan, X.; Zhang, H.; Lu, J.; Gao, Y.; Zhao, X.; Zhang, L. Optimizing the Electrical Conductivity of Polymer Nanocomposites under the Shear Field by Hybrid Fillers: Insights from Molecular Dynamics Simulation. Polymer. 2019, 168, 138–145. DOI: 10.1016/j.polymer.2019.02.028.
  • Toepperwein, G. N.; de Pablo, J. J. Cavitation and Crazing in Rod-Containing Nanocomposites. Macromolecules. 2011, 44, 5498–5509. DOI: 10.1021/ma200541s.
  • Hu, F.; Nie, Y.; Li, F.; Liu, J.; Gao, Y.; Wang, W.; Zhang, L. Molecular Dynamics Simulation Study of the Fracture Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles. Phys. Chem. Chem. Phys. 2019, 21, 11320–11328. DOI: 10.1039/C8CP07668E.
  • Binder, K.; Baschnagel, J.; Paul, W. Glass Transition of Polymer Melts: Test of Theoretical Concepts by Computer Simulation. Prog. Polym. Sci. 2003, 28, 115–172. DOI: 10.1016/S0079-6700(02)00030-8.
  • Plimpton, S.;. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. DOI: 10.1006/jcph.1995.1039.
  • van Beek, L. K. H.; van Pul, B. I. C. F. Internal Field Emission in Carbon Black-loaded Natural Rubber Vulcanizates. J. Appl. Polym. Sci. 1962, 6, 651–655. DOI: 10.1002/app.1962.070062408.
  • Cao, Q.; Song, Y.; Tan, Y.; Zheng, Q. Conductive and Viscoelastic Behaviors of Carbon Black Filled Polystyrene during Annealing. Carbon. 2010, 48, 4268–4275. DOI: 10.1016/j.carbon.2010.07.036.
  • Sisk, B. C.; Lewis, N. S. Vapor Sensing Using Polymer/Carbon Black Composites in the Percolative Conduction Regime. Langmuir. 2006, 22, 7928–7935. DOI: 10.1021/la053287s.
  • Smith, J. S.; Bedrov, D.; Smith, G. D. A Molecular Dynamics Simulation Study of Nanoparticle Interactions in A Model Polymer-nanoparticle Composite. Compos. Sci. Technol. 2003, 63, 1599–1605. DOI: 10.1016/S0266-3538(03)00061-7.
  • Smith, G. D.; Bedrov, D. Dispersing Nanoparticles in a Polymer Matrix: Are Long, Dense Polymer Tethers Really Necessary? Langmuir. 2009, 25, 11239–11243. DOI: 10.1021/la902329v.
  • Gao, Y.; Liu, J.; Shen, J.; Wu, Y.; Zhang, L. Influence of Various Nanoparticle Shapes on the Interfacial Chain Mobility: A Molecular Dynamics Simulation. Phys. Chem. Chem. Phys. 2014, 16, 21372–21382. DOI: 10.1039/C4CP03019B.
  • Hooper, J. B.; Schweizer, K. S. Contact Aggregation, Bridging, and Steric Stabilization in Dense Polymer−Particle Mixtures. Macromolecules. 2005, 38, 8858–8869. DOI: 10.1021/ma051318k.
  • Nam, S.; Cho, H. W.; Lim, S.; Kim, D.; Kim, H.; Sung, B. J. Enhancement of Electrical and Thermomechanical Properties of Silver Nanowire Composites by the Introduction of Nonconductive Nanoparticles: Experiment and Simulation. ACS Nano. 2013, 7, 851–856. DOI: 10.1021/nn305439t.
  • Tuckerman, M. E.; Mundy, C. J.; Balasubramanian, S.; Klein, M. L. Modified Nonequilibrium Molecular Dynamics for Fluid Flows with Energy Conservation. J. Chem. Phys. 1997, 106, 5615–5621. DOI: 10.1063/1.473582.
  • Lees, A. W.; Edwards, S. F. The Computer Study of Transport Processes under Extreme Conditions. J. Phy. C. 1972, 5, 1921. DOI: 10.1088/0022-3719/5/15/006.
  • Gao, Y.; Cao, D.; Wu, Y.; Liu, J.; Zhang, L. Destruction and Recovery of a Nanorod Conductive Network in Polymer Nanocomposites via Molecular Dynamics Simulation. Soft Matter. 2016, 12, 3074–3083. DOI: 10.1039/C5SM02803E.
  • Hiemenz, P. C.; Lodge, T. P. First Report of Alternaria dianthicola Causing Leaf Blight on Withania somnifera from India; CRC Press: London, New York, 2007, p. 587. .
  • Larson, R. G. Report and abstracts of the Sixth International Workshop on chromosome 9; Oxford University Press: New York, 1999, p. 663. .
  • Kwon, S.; Cho, H. W.; Gwon, G.; Kim, H.; Sung, B. J. Effects of Shape and Flexibility of Conductive Fillers in Nanocomposites on Percolating Network Formation and Electrical Conductivity. Phys. Rev. E. 2016, 93, 032501. DOI: 10.1103/PhysRevE.93.032501.
  • Li, J.; Ma, P. C.; Chow, W. S.; To, C. K.; Tang, B. Z.; Kim, J. K. Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes. Adv. Funct. Mater. 2007, 17, 3207–3215. DOI: 10.1002/adfm.v17:16.
  • Lu, W.; Chou, T.-W.; Thostenson, E. T. A Three-dimensional Model of Electrical Percolation Thresholds in Carbon Nanotube-based Composites. Appl. Phys. Lett. 2010, 96, 223106. DOI: 10.1063/1.3443731.
  • White, S. I.; DiDonna, B. A.; Mu, M.; Lubensky, T. C.; Winey, K. I. Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys. Rev. B. 2009, 79, 024301.
  • Zhang, C.; Ma, C.-A.; Wang, P.; Sumita, M. Temperature Dependence of Electrical Resistivity for Carbon Black Filled Ultra-high Molecular Weight Polyethylene Composites Prepared by Hot Compaction. Carbon. 2005, 43, 2544–2553. DOI: 10.1016/j.carbon.2005.05.006.
  • Gubbels, F.; Blacher, S.; Vanlathem, E.; Jerome, R.; Deltour, R.; Brouers, F.; Teyssie, P. Design of Electrical Composites: Determining the Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends. Macromolecules. 1995, 28, 1559–1566. DOI: 10.1021/ma00109a030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.