414
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Coarse-grained modeling of cell division in 3D: influence of density, medium viscosity, and inter-membrane friction on cell growth and nearest neighbor distribution

, , , &
Pages 150-162 | Received 19 Nov 2019, Accepted 13 Dec 2019, Published online: 05 Jan 2020

References

  • Jorgensen, P.; Tyers, M. How Cells Coordinate Growth and Division. Curr. Biol. 2004, 14(23), R1014–R1027. DOI: 10.1016/j.cub.2004.11.027.
  • Lee, D. A.; Knight, M. M.; Campbell, J. J.; Bader, D. L. Stem Cell Mechanobiology. J. Cell. Biochem. 2010, 112, 1–9. DOI: 10.1002/jcb.22758.
  • Battista, S.; Guarnieri, D.; Borselli, C.; Zeppetelli, S.; Borzacchiello, A.; Mayol, L.; Gerbasio, D.; Keene, D. R.; Ambrosio, L.; Netti, P. A. The Effect of Matrix Composition of 3D Constructs on Embryonic Stem Cell Differentiation. Biomaterials. 2005, 26, 6194–6207. DOI: 10.1016/j.biomaterials.2005.04.003.
  • Keller, R.; Danilchik, M. Regional Expression, Pattern and Timing of Convergence and Extension during Gastrulation of Xenopus Laevis. Development. 1988, 103, 193–209.
  • Chuai, M.; Zeng, W.; Yang, X.; Boychenko, V.; Glazier, J. A.; Weijer, C. J. Cell Movement during Chick Primitive Streak Formation. Dev. Biol. 2006, 296, 137–149. DOI: 10.1016/j.ydbio.2006.04.451.
  • Lauffenburger, D. A.; Horwitz, A. F. Cell Migration: A Physically Integrated Molecular Process. Cell. 1996, 84(3), 359–369. DOI: 10.1016/S0092-8674(00)81280-5.
  • Farge, E.;. Mechanotransduction in Development. Curr. Top. Dev. Biol. 2011, 95, 243–265.
  • Palmieri, B.; Bresler, Y.; Wirtz, D.; Grant, M. Multiple Scale Model for Cell Migration in Monolayers: Elastic Mismatch between Cells Enhances Motility. Sci. Rep. 2015, 5, 11745. DOI: 10.1038/srep11745.
  • Mayor, R.; Etienne-Manneville, S. The Front and Rear of Collective Cell Migration. Nat. Rev. Mol. Cell Biol. jan, 2016, 17, 97–109. DOI: 10.1038/nrm.2015.14.
  • Vishwakarma, M.; Russo, J. D.; Probst, D.; Schwarz, U. S.; Das, T.; Spatz, J. P. Mechanical Interactions among Followers Determine the Emergence of Leaders in Migrating Epithelial Cell Collectives. Nat. Comm. aug 2018, 9. doi:10.1038/s41467-018-05927-6.
  • Palmieri, B.; Scanlon, C.; Worroll, D.; Grant, M.; Lee, J.; Leipzig, N. D. Substrate Mediated Interaction between Pairs of Keratocytes: Multipole Traction Force Models Describe Their Migratory Behavior. PLoS One. mar, 2019, 14, e0212162. DOI: 10.1371/journal.pone.0212162.
  • Friedl, P.; Locker, J.; Sahai, E.; Segall, J. E. Classifying Collective Cancer Cell Invasion. Nat. Cell Biol. aug, 2012, 14, 777–783. DOI: 10.1038/ncb2548.
  • Hakim, V.; Silberzan, P. Collective Cell Migration: A Physics Perspective. Rep. Prog. Phys. apr, 2017, 80, 076601. DOI: 10.1088/1361-6633/aa65ef.
  • Plodinec, M.; Loparic, M.; Monnier, C. A.; Obermann, E. C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J. T.; Aebi, U.; Bentires-Alj, M.; Lim, R. Y. H.; et al. The Nanomechanical Signature of Breast Cancer. Nat. Nanotech. 2012, 7(11), 757–765. DOI: 10.1038/nnano.2012.167.
  • Luo, Q.; Kuang, D.; Zhang, B.; Song, G. Cell Stiffness Determined by Atomic Force Microscopy and Its Correlation with Cell Motility. Biochim. Biophys. Acta - General Subjects. sep, 2016, 1860, 1953–1960. DOI: 10.1016/j.bbagen.2016.06.010.
  • Chaudhuri, P. K.; Low, B. C.; Lim, C. T. Mechanobiology of Tumor Growth. Chem. Rev. jun, 2018, 118, 6499–6515. DOI: 10.1021/acs.chemrev.8b00042.
  • Huang, H.; Kamm, R. D.; Lee, R. T. Cell Mechanics and Mechanotransduction: Pathways, Probes, and Physiology. Am. J. Physiol. Cell Physiol. 2004, 287, C1–C11. DOI: 10.1152/ajpcell.00559.2003.
  • Janmey, P. A.; McCulloch, C. A. Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli. Annu. Rev. Biomed. Eng. 2007, 9, 1–34. DOI: 10.1146/annurev.bioeng.9.060906.151927.
  • Saunders, M. M. Mechanical Testing for the Biomechanics Engineer: A Practical Guide, Synthesis Lectures on Biomedical Engineering, San Rafael, CA: Morgan & Claypool Publishers, 2015; Vol. 9, pp 1–276.
  • Paluch, E. K.; Nelson, C. M.; Biais, N.; Fabry, B.; Moeller, J.; Pruitt, B. L.; Wollnik, C.; Kudryasheva, G.; Rehfeldt, F.; Federle, W. Mechanotransduction: Use the Force(s). BMC Biol. 2015, 13. DOI: 10.1186/s12915-015-0150-4.
  • Mierke, C. T.;. The Fundamental Role of Mechanical Properties in the Progression of Cancer Disease and Inflammation. Rep. Prog. Phys. jul, 2014, 77, 076602. DOI: 10.1088/0034-4885/77/7/076602.
  • Schwarz, U. S.;. Mechanobiology by the Numbers: A Close Relationship between Biology and Physics. Nat. Rev. Mol. Cell Biol. nov, 2017, 18, 711–712. DOI: 10.1038/nrm.2017.109.
  • Sussman, D. M.;. cellGPU: Massively Parallel Simulations of Dynamic Vertex Models. Comput. Phys. Commun. 2017, 219, 400–406. DOI: 10.1016/j.cpc.2017.06.001.
  • Brodland, G. W.; Veldhuis, J. H. A Computer Model for Reshaping of Cells in Epithelia Due to In-plane Deformation and Annealing. Comput. Met. Biomech. Biomed. Eng. 2003, 6, 89–98. DOI: 10.1080/1025584031000078934.
  • Meyer-Hermann, M.; Delaunay-Object-Dynamics: Cell Mechanics with a 3D Kinetic and Dynamic Weighted Delaunay-Triangulation. Curr. Top. Dev. Biol. 2008, 81, 373–399.
  • Ziebert, F.; Aranson, I. S. Computational Approaches to Substrate-based Cell Motility,” Npj Comput. Mater. 2016, 2, 16019.
  • Jones, G. W.; Chapman, S. J. Modeling Growth in Biological Materials. SIAM Rev. 2012, 54(1), 52–118. DOI: 10.1137/080731785.
  • Liedekerke, P. V.; Palm, M. M.; Jagiella, N.; Drasdo, D. Simulating Tissue Mechanics with Agent-based Models: Concepts, Perspectives and Some Novel Results. J. Comp. Part. Mech. 2015, 2, 401–444. DOI: 10.1007/s40571-015-0082-3.
  • Liedekerke, P. V.; Neitsch, J.; Johann, T.; Warmt, E.; Grosser, S.; Valverde, I. G.; Kaes, J.; Hoehme, S.; Drasdo, D. Quantifying the Mechanics and Growth of Cells and Tissues in 3D Using High Resolution Computational Models. bioRxiv. preprint. 2018. DOI: 10.1101/470559.
  • Graner, F.; Glazier, J. Simulation of Biological Cell Sorting Using a Two-Dimensional Extended Potts Model. Phys. Rev. Lett. 1992, 69, 2013–2016. DOI: 10.1103/PhysRevLett.69.2013.
  • Glazier, J.; Graner, F. Simulation of the Differential Adhesion Driven Rearrangement of Biological Cells. Phys. Rev. E. 1993, 47, 2128–2154. DOI: 10.1103/PhysRevE.47.2128.
  • Mkrtchyan, A.; Åström, J.; Karttunen, M. A New Model for Cell Division and Migration with Spontaneous Topology Changes. Soft Matter. 2014, 10, 4332–4339. DOI: 10.1039/C4SM00489B.
  • Schwarz, U. S.; Safran, S. A. Physics of Adherent Cells. Rev. Mod. Phys. Aug, 2013, 85, 1327–1381. DOI: 10.1103/RevModPhys.85.1327.
  • Honda, H.; Tanemura, M.; Nagai, T. A Three-dimensional Vertex Dynamics Cell Model of Space-filling Polyhedra Simulating Cell Behavior in A Cell Aggregate. J. Theor. Biol. 2004, 226, 439–453. DOI: 10.1016/j.jtbi.2003.10.001.
  • Farhadifar, R.; Röper, J.-C.; Aigouy, B.; Eaton, S.; Jülicher, F. The Influence of Cell Mechanics, Cell-Cell Interactions, and Proliferation on Epithelial Packing. Curr Biol. 2007, 17, 2095–2104. DOI: 10.1016/j.cub.2007.11.049.
  • Hufnagel, L.; Teleman, A. A.; Rouault, H.; Cohen, S. M.; Shraiman, B. I. “On the Mechanism of Wing Size Determination in Fly Development,” Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 3835–3840. DOI: 10.1073/pnas.0607134104.
  • Fletcher, A. G.; Osterfield, M.; Baker, R. E.; Shvartsman, S. Y. Vertex Models of Epithelial Morphogenesis. Biophys. J. 2014, 106, 2291–2304. DOI: 10.1016/j.bpj.2013.11.4498.
  • Sussman, D. M.; Schwarz, J.; Marchetti, M. C.; Manning, M. L. Soft yet Sharp Interfaces in a Vertex Model of Confluent Tissue. Phys. Rev. Lett. 2018, 120, 058001. DOI: 10.1103/PhysRevLett.120.058001.
  • Schaller, G.; Meyer-Hermann, M. “Kinetic and Dynamic Delaunay Tetrahedralizations in Three Dimensions. Comput. Phys. Commun. 2004, 162, 9–23. DOI: 10.1016/j.cpc.2004.06.066.
  • Schaller, G.; Meyer-Hermann, M. Multicellular Tumor Spheroid in an Off-lattice Voronoi-Delaunay Cell Model. Phys. Rev. E. 2005, 71, 051910. DOI: 10.1103/PhysRevE.71.051910.
  • Beyer, T.; Meyer-Hermann, M. Multiscale Modeling of Cell Mechanics and Tissue Organization. IEEE Eng. Med. Biol. Mag. 2009, 28, 38–45. DOI: 10.1109/MEMB.2009.931790.
  • Szabó, A.; Merks, R. M. H. Cellular Potts Modeling of Tumor Growth, Tumor Invasion, and Tumor Evolution. Front. Oncol. 2013, 3, 87. DOI: 10.3389/fonc.2013.00087.
  • Shirinifard, A.; Gens, J. S.; Zaitlen, B. L.; PopÅ‚awski, N. J.; Swat, M.; Glazier, J. A. 3D Multi-Cell Simulation of Tumor Growth and Angiogenesis. PLoS One. 2009, 4, e7190. DOI: 10.1371/journal.pone.0007190.
  • Merks, R. M. H.; Glazier, J. A. A Cell-Centered Approach to Developmental Biology. Phys. A. 2005, 352, 113–130. DOI: 10.1016/j.physa.2004.12.028.
  • Elder, K. R.; Katakowski, M.; Haataja, M.; Grant, M. Modeling Elasticity in Crystal Growth. Phys. Rev. Lett. jun, 2002, 88, 245701. DOI: 10.1103/PhysRevLett.88.245701.
  • Boettinger, W. J.; Warren, J. A.; Beckermann, C.; Karma, A. Phase-field Simulation of Solidification. Ann. Rev. Mat. Res. Aug 2002, 32, 163–194.
  • Provatas, N.; Elder, K. Phase-Field Methods in Materials Science and Engineering; Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, oct 2010.
  • Fan, J.; Sammalkorpi, M.; Haataja, M. Domain Formation in the Plasma Membrane: Roles of Nonequilibrium Lipid Transport and Membrane Proteins. Phys. Rev. Lett. apr, 2008, 100, 178102. DOI: 10.1103/PhysRevLett.100.178102.
  • Haataja, M. P.;. Lipid Domain Co-localization Induced by Membrane Undulations. Biophys. J. feb, 2017, 112, 655–662. DOI: 10.1016/j.bpj.2016.12.030.
  • Van Liedekerke, P.; Buttenschön, A.; Drasdo, D. Chapter 14 - Off-Lattice Agent-Based Models for Cell and Tumor Growth: Numerical Methods, Implementation, and Applications. In Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes; Cerrolaza, M., Shefelbine, S. J., Garzón-Alvarado, D., Eds.; Academic Press: Cambridge, MA, 2018; pp 245–267.
  • Madhikar, P.; Åström, J.; Westerholm, J.; Karttunen, M. CellSim3D: GPU Accelerated Software for Simulations of Cellular Growth and Division in Three Dimensions. Comput. Phys. Comm. 2018, 232, 206–213. DOI: 10.1016/j.cpc.2018.05.024.
  • Rejniak, K. A.; Anderson, A. R. A. Hybrid Models of Tumor Growth. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3(1), 115–125. DOI: 10.1002/wsbm.102.
  • Madhikar, P.; Åström, J.; Westerholm, J.; Karttunen, M. CellSim3D – GPU Accelerated 3D Cell Simulator. https://github.com/SoftSimu/CellSim3d, 2018.
  • Brú, A.; Albertos, S.; Luis Subiza, J.; García-Asenjo, J. L.; Brú, I. The Universal Dynamics of Tumor Growth. Biophys. J. 2003, 85(5), 2948–2961. DOI: 10.1016/S0006-3495(03)74715-8.
  • Helmlinger, G.; Netti, P. A.; Lichtenbeld, H. C.; Melder, R. J.; Jain, R. K. Solid Stress Inhibits the Growth of Multicellular Tumor Spheroids. Nat. Biotech. 1997, 15(8), 778–783. DOI: 10.1038/nbt0897-778.
  • Brodland, G.; Veldhuis, J. H. Computer Simulations of Mitosis and Interdependencies between Mitosis Orientation, Cell Shape and Epithelia Reshaping. J. Biomech. 2002, 35(5), 673–681. DOI: 10.1016/S0021-9290(02)00006-4.
  • Galle, J.; Hoffmann, M.; Aust, G. From Single Cells to Tissue Architecture—A Bottom-up Approach to Modelling the Spatio-temporal Organisation of Complex Multi-cellular Systems. J. Math. Biol. 2009, 58(1–2), 261–283. DOI: 10.1007/s00285-008-0172-4.
  • Mainardi, F.; Spada, G. “Creep, Relaxation and Viscosity Properties for Basic Fractional Models in Rheology. Eur. Phys. J. Sp. Top. Mar, 2011, 193, 133–160. DOI: 10.1136/bmj.319.7206.332.
  • Murray, P.; Frampton, G.; Nelson, P. Cell Adhesion Molecules. BMJ. 1999, 319(7206), 332–334. DOI: 10.1136/bmj.319.7206.332.
  • Edelman, G. M.;. Cell Adhesion Molecules. Science. 1983, 219(4584), 450–457. DOI: 10.1126/science.6823544.
  • Edelman, G. M.; Crossin, K. L. “Cell Adhesion Molecules: Implications for a Molecular Histology. Annu. Rev. Biochem. 1991, 60, 155–190. DOI: 10.1146/annurev.bi.60.070191.001103.
  • Stewart, M. P.; Helenius, J.; Toyoda, Y.; Ramanathan, S. P.; Muller, D. J.; Hyman, A. A. Hydrostatic Pressure and the Actomyosin Cortex Drive Mitotic Cell Rounding. Nature. 2011, 469(7329), 226–230. DOI: 10.1038/nature09642.
  • Gibson, M. C.; Patel, A. B.; Nagpal, R.; Perrimon, N. The Emergence of Geometric Order in Proliferating Metazoan Epithelia. Nature. 2006, 442, 1038–1041. DOI: 10.1038/nature05014.
  • Nagpal, R.; Patel, A.; Gibson, M. C. Epithelial Topology. Bioessays. 2008, 30, 260–266. DOI: 10.1002/(ISSN)1521-1878.
  • Åström, J. A.; Karttunen, M. Cell Aggregation: Packing Soft Grains. Phys. Rev. E. 2006, 73(6), 062301. DOI: 10.1103/PhysRevE.73.062301.
  • Nestor-Bergmann, A.; Johns, E.; Woolner, S.; Jensen, O. E. Mechanical Characterization of Disordered and Anisotropic Cellular Monolayers. Phys. Rev. E. 2018, 97(5), 052409. DOI: 10.1103/PhysRevE.97.052409.
  • Alberts, B.; Bray, B.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. D. Molecular Biology of the Cell, 3rd; New York, NY: Garland Science, 1994; pp 891–906.
  • Hartwell, L. H.; Weinert, T. A. Checkpoints: Controls that Ensure the Order of Cell Cycle Events. Science. 1989, 246(4930), 629–634. DOI: 10.1126/science.2683079.
  • Nurse, P.;. Universal Control Mechanism Regulating Onset of M-phase. Nature. 1990, 344(6266), 503–508. DOI: 10.1038/344503a0.
  • Zetterberg, A.;. Control of Mammalian Cell Proliferation. Curr. Op. Cell Biol. 1990, 2(2), 296–300. DOI: 10.1016/0955-0674(90)90022-7.
  • Pardee, A. B.;. G1 Events and Regulation of Cell Proliferation. Science. 1989, 246(4930), 603–608. DOI: 10.1126/science.2683075.
  • Winick, M.;. Nutrition and Cell Growth. Nutr. Rev. 1968, 26(7), 195–197. DOI: 10.1111/j.1753-4887.1968.tb00915.x.
  • Williams, F. M.;. A Model of Cell Growth Dynamics. J. Theor. Biol. 1967, 15(2), 190–207. DOI: 10.1016/0022-5193(67)90200-7.
  • Horowitz, J.; Normand, M. D.; Corradini, M. G.; Peleg, M. Probabilistic Model of Microbial Cell Growth, Division, and Mortality. Appl. Environ. Microbiol. 2010, 76(1), 230–242. DOI: 10.1128/AEM.01527-09.
  • Schnute, J.;. A Versatile Growth Model with Statistically Stable Parameters. Can. J. Fish. Aquat. Sci. 1981, 38(9), 1128–1140. DOI: 10.1139/f81-153.
  • Wartlick, O.; Mumcu, P.; Kicheva, A.; Bittig, T.; Seum, C.; Jülicher, F.; Gonzalez-Gaitan, M. Dynamics of Dpp Signaling and Proliferation Control. Science. 2011, 331, 1154–1159. DOI: 10.1126/science.1200037.
  • Rudolph, P.; Peters, J.; Lorenz, D.; Schmidt, D.; Parwaresch, R. Correlation between Mitotic and Ki-67 Labeling Indices in Paraffin-embedded Carcinoma Specimens. Hum. Path. 1998, 29(11), 1216–1222. DOI: 10.1016/S0046-8177(98)90248-9.
  • Jin, L.; Murakami, T. H.; Janjua, N. A.; Hori, Y. The Effects of Zinc Oxide and Diethyldithiocarbamate on the Mitotic Index of Epidermal Basal Cells of Mouse Skin. Acta Med. Okayama. 1994, 48(5), 231–236. DOI: 10.18926/AMO/31117.
  • Romar, G. A.; Kupper, T. S.; Divito, S. J. Research Techniques Made Simple: Techniques to Assess Cell Proliferation. J. Investig. Dermatol. 2016, 136(1), e1–e7. DOI: 10.1016/j.jid.2015.11.020.
  • Nakano, T.; Oka, K. Differential Values of Ki-67 Index and Mitotic Index of Proliferating Cell Population. An Assessment of Cell Cycle and Prognosis in Radiation Therapy for Cervical Cancer. Cancer. 1993, 72, 2401–2408. DOI: 10.1002/(ISSN)1097-0142.
  • van Diest, P. J.; van der Wall, E.; Baak, J. P. A. Prognostic Value of Proliferation in Invasive Breast Cancer: A Review. J. Clin. Pathol. 2004, 57(7), 675–681. DOI: 10.1136/jcp.2003.010777.
  • Chung, K.-T.; Nilson, E. H.; Case, M. J.; Marr, A. G.; Hungate, R. E. Estimation of Growth Rate from the Mitotic Index. Appl. Microbiol. 1973, 25(5), 778–780.
  • Stoker, M. G. P.; Rubin, H. Density Dependent Inhibition of Cell Growth in Culture. Nature. 1967, 215(5097), 171–172. DOI: 10.1038/215171a0.
  • Lieberman, M. A.; Glaser, L. Density-dependent Regulation of Cell Growth: An Example of a Cell-cell Recognition Phenomenon. J. Membr. Biol. 1981, 63(1), 1–11. DOI: 10.1007/BF01969440.
  • Holley, R. W.;. Control of Growth of Mammalian Cells in Cell Culture. Nature. 1975, 258(5535), 487–490. DOI: 10.1038/258487a0.
  • Westermark, B.;. Density Dependent Proliferation of Human Glia Cells Stimulated by Epidermal Growth Factor. Biochem. Biophys. Res. Comm. 1976, 69(2), 304–310. DOI: 10.1016/0006-291X(76)90522-2.
  • Noonan, K. D.; Burger, M. M. The Role of the Cell Surface in Contact Inhibition of Cell Division. In Progress in Surface and Membrane Science; Cadenhead, D. A., Danielli, J. F., Rosenberg, M. D., Eds.; Academic Press: New York, NY, 1974; Vol. 8, pp 245–284.
  • Sandersius, S. A.; Chuai, M.; Weijer, C. J.; Newman, T. J.; Langowski, J. Correlating Cell Behavior with Tissue Topology in Embryonic Epithelia. PLoS One. 2011, 6(4), e18081. DOI: 10.1371/journal.pone.0018081.
  • Boal, D.;. Mechanics of the Cell; New York, NY: Cambridge University Press, 2001.
  • Nakajima, Y.-I.; Meyer, E. J.; Kroesen, A.; McKinney, S. A.; Gibson, M. C. Epithelial Junctions Maintain Tissue Architecture by Directing Planar Spindle Orientation. Nature. 2013, 500, 359–362. DOI: 10.1038/nature12335.
  • Thue, A.;. Über Die Dichteste Zusammenstellung Von Kongruenten Kreisen in Einer Ebene. Christiania Vid.-Selsk. Skr. 1910, 1, 3–9.
  • Fejes, L.;. Über Die Dichteste Kugellagerung. Math. Zeitschr. dec, 1942, 48, 676–684. DOI: 10.1007/BF01180035.
  • Chaikin, P.;. Random Thoughts. Phys. Today. jun, 2007, 60, 8–9. DOI: 10.1063/1.2754580.
  • Clusel, M.; Corwin, E. I.; Siemens, A. O. N.; Brujié, J. A ‘granocentric’ Model for Random Packing of Jammed Emulsions. Nature. 2009, 460(7255), 611–615. DOI: 10.1038/nature08158.
  • Rohatgi, A.;, “WebPlotDigitizer,” 2018.
  • Corwin, E. I.; Clusel, M.; Siemens, A. O. N.; Brujié, J. Model for Random Packing of Polydisperse Frictionless Spheres. Soft Matter. 2010, 6(13), 2949–2959. DOI: 10.1039/c000984a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.