435
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Investigating blend morphology of P3HT:PCBM bulk heterojunction solar cells by classical atomistic simulations – Progress and prospects

& ORCID Icon
Pages 163-176 | Received 31 Oct 2019, Accepted 23 Dec 2019, Published online: 10 Jan 2020

References

  • Chen, L.-M.; Hong, Z.; Gang, L.; Yang, Y. Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Adv.Mate. 2009, 21(14–15), 1434.
  • Dou, L.; You, J.; Hong, Z.; Xu, Z.; Li, G.; Street, R. A.; Yang, Y. 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Adv.Mate. 2013, 25(46), 6642. DOI: 10.1002/adma.201302563.
  • Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107(4), 1324. DOI: 10.1021/cr050149z.
  • Krebs, F. C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Solar Energy Mater. Solar Cells. 2009, 93(4), 394. DOI: 10.1016/j.solmat.2008.10.004.
  • Thompson, B. C.; Fréchet, J. M. J. Polymer–Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 2008, 47(1), 58. DOI: 10.1002/(ISSN)1521-3773.
  • Huo, Y.; Zhang, H.-L.; Zhan, X. Nonfullerene All-small-molecule Organic Solar Cells. ACS Energy Lett. 2019, 4(6), 1241. DOI: 10.1021/acsenergylett.9b00528.
  • Kaltenbrunner, M.; White, M. S.; Głowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S. Ultrathin and Lightweight Organic Solar Cells with High Flexibility. Nat. Commun. 2012, 3, 770. DOI: 10.1038/ncomms1772.
  • Lee, M. R.; Eckert, R. D.; Forberich, K.; Dennler, G.; Brabec, C. J.; Gaudiana, R. A. Solar Power Wires Based on Organic Photovoltaic Materials. Science. 2009, 324(5924), 232. DOI: 10.1126/science.1168539.
  • Li, G.; Zhu, R.; Yang, Y. Polymer Solar Cells. Nat. Photonics. 2012, 6, 153. DOI: 10.1038/nphoton.2012.11.
  • Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118(7), 3447.
  • Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic Solar Cells Based on Non-fullerene Acceptors. Nat. Mater. 2018, 17, 119. DOI: 10.1038/nmat5063.
  • Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Efficient Photodiodes from Interpenetrating Polymer Networks. Nature. 1995, 376, 498. DOI: 10.1038/376498a0.
  • Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science. 1995, 270(5243), 1789. DOI: 10.1126/science.270.5243.1789.
  • Scharber, M. C.; Sariciftci, N. S. Efficiency of Bulk-heterojunction Organic Solar Cells. Prog. Polym. Sci. 2013, 38(12), 1929. DOI: 10.1016/j.progpolymsci.2013.05.001.
  • Yi, Y.; Coropceanu, V.; Brédas, J.-L. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry. J. Am. Chem. Soc. 2009, 131(43), 15777. DOI: 10.1021/ja905975w.
  • Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C. Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chem. Rev. 2014, 114(14), 7006. DOI: 10.1021/cr400353v.
  • Jackson, N. E.; Savoie, B. M.; Marks, T. J.; Chen, L. X.; Ratner, M. A. The Next Breakthrough for Organic Photovoltaics? J. Phys. Chem. Lett. 2015, 6(1), 77. DOI: 10.1021/jz502223t.
  • Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Adv.Mate. 2006, 18(6), 789. DOI: 10.1002/(ISSN)1521-4095.
  • Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science. 1992, 258(5087), 1474. DOI: 10.1126/science.258.5087.1474.
  • Gorenflot, J.; Paulke, A.; Piersimoni, F.; Wolf, J.; Kan, Z.; Cruciani, F.; El Labban, A.; Neher, D.; Beaujuge, P. M.; Laquai, F. From Recombination Dynamics to Device Performance: Quantifying the Efficiency of Exciton Dissociation, Charge Separation, and Extraction in Bulk Heterojunction Solar Cells with Fluorine-Substituted Polymer Donors. Adv. Energy Mater. 2018, 8(4), 1701678. DOI: 10.1002/aenm.201701678.
  • Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J. Influence of Blend Microstructure on Bulk Heterojunction Organic Photovoltaic Performance. Chem. Soc. Rev. 2011, 40(3), 1185. DOI: 10.1039/C0CS00045K.
  • Kleinschmidt, A. T.; Root, S. E.; Lipomi, D. J. Poly(3-hexylthiophene) (P3HT): Fruit Fly or Outlier in Organic Solar Cell Research? J. Mater. Chem. A. 2017, 5(23), 11396. DOI: 10.1039/C6TA08317J.
  • Saunders, B. R.; Turner, M. L. Nanoparticle–Polymer Photovoltaic Cells. Adv. Colloid Interface Sci. 2008, 138(1), 1. DOI: 10.1016/j.cis.2007.09.001.
  • Po, R.; Bernardi, A.; Calabrese, A.; Carbonera, C.; Corso, G.; Pellegrino, A. From Lab to Fab: How Must the Polymer Solar Cell Materials Design Change? - an Industrial Perspective. Energy Environ. Sci. 2014, 7(3), 925. DOI: 10.1039/c3ee43460e.
  • Treat, N. D.; Brady, M. A.; Smith, G.; Toney, M. F.; Kramer, E. J.; Hawker, C. J.; Chabinyc, M. L. Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend. Adv. Energy Mater. 2011, 1(1), 82. DOI: 10.1002/aenm.201000023.
  • Treat, N. D.; Varotto, A.; Takacs, C. J.; Batara, N.; Al-Hashimi, M.; Heeney, M. J.; Heeger, A. J.; Wudl, F.; Hawker, C. J.; Chabinyc, M. L. Polymer-Fullerene Miscibility: A Metric for Screening New Materials for High-Performance Organic Solar Cells. J. Am. Chem. Soc. 2012, 134(38), 15869. DOI: 10.1021/ja305875u.
  • Müller, C. On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability. Chem. Mater. 2015, 27(8), 2740. DOI: 10.1021/acs.chemmater.5b00024.
  • Savagatrup, S.; Printz, A. D.; O’Connor, T. F.; Zaretski, A. V.; Rodriquez, D.; Sawyer, E. J.; Rajan, K. M.; Acosta, R. I.; Root, S. E.; Lipomi, D. J. Mechanical Degradation and Stability of Organic Solar Cells: Molecular and Microstructural Determinants. Energy Environ. Sci. 2015, 8(1), 55. DOI: 10.1039/C4EE02657H.
  • Savagatrup, S.; Printz, A. D.; Wu, H.; Rajan, K. M.; Sawyer, E. J.; Zaretski, A. V.; Bettinger, C. J.; Lipomi, D. J. Viability of Stretchable Poly(3-heptylthiophene) (P3hpt) for Organic Solar Cells and Field-effect Transistors. Synth. Met. 2015, 203, 208. DOI: 10.1016/j.synthmet.2015.02.031.
  • Guo, X.; Cui, C.; Zhang, M.; Huo, L.; Huang, Y.; Hou, J.; Li, Y. High Efficiency Polymer Solar Cells Based on poly(3-hexylthiophene)/indene-C70 Bisadduct with Solvent Additive. Energy Environ. Sci. 2012, 5, 7943. DOI: 10.1039/c2ee21481d.
  • Stingelin-Stutzmann, N.; Smits, E.; Wondergem, H.; Tanase, C.; Blom, P.; Smith, P.; de Leeuw, D. Organic Thin-film Electronics from Vitreous Solution-processed Rubrene Hypereutectics. Nat. Mater. 2005, 4, 601. DOI: 10.1038/nmat1426.
  • Yan, J.; Saunders, B. R. Third-generation Solar Cells: A Review and Comparison of Polymer: Fullerene,hybrid Polymer and Perovskite Solar Cells. RSC Adv. 2014, 4(82), 43286. DOI: 10.1039/C4RA07064J.
  • Hoppe, H.; Sariciftci, N. S. Organic Solar Cells: An Overview. J. Mater. Res. 2011, 19(7), 1924. DOI: 10.1557/JMR.2004.0252.
  • Jørgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of Polymer Solar Cells. Solar Energy Mater. Solar Cells. 2008, 92(7), 686. DOI: 10.1016/j.solmat.2008.01.005.
  • Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Polymer–Fullerene Bulk-Heterojunction Solar Cells. Adv.Mate. 2010, 22(34), 3839. DOI: 10.1002/adma.200903697.
  • Facchetti, A. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chem. Mater. 2011, 23(3), 733. DOI: 10.1021/cm102419z.
  • Mishra, A.; Bäuerle, P. Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology. Angew. Chem. Int. Ed. 2012, 51(9), 2020. DOI: 10.1002/anie.201102326.
  • Bundgaard, E.; Krebs, F. C. Low Band Gap Polymers for Organic Photovoltaics. Solar Energy Mater. Solar Cells. 2007, 91(11), 954. DOI: 10.1016/j.solmat.2007.01.015.
  • Lin, Y.; Li, Y.; Zhan, X. Small Molecule Semiconductors for High-efficiency Organic Photovoltaics. Chem. Soc. Rev. 2012, 41(11), 4245. DOI: 10.1039/c2cs15313k.
  • Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V. Influence of Nanomorphology on the Photovoltaic Action of Polymer–Fullerene Composites. Nanotechnology. 2004, 15(9), 1317. DOI: 10.1088/0957-4484/15/9/035.
  • Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S. Nanoscale Morphology of Conjugated Polymer/Fullerene-Based Bulk- Heterojunction Solar Cells. Adv. Funct. Mater. 2004, 14(10), 1005. DOI: 10.1002/(ISSN)1616-3028.
  • Yang, C. Y.; Heeger, A. J. Morphology of Composites of Semiconducting Polymers Mixed with C60. Synth. Met. 1996, 83(2), 85. DOI: 10.1016/S0379-6779(97)80058-6.
  • Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Lett. 2005, 5(4), 579. DOI: 10.1021/nl048120i.
  • Huang, J.-H.; Chien, F.-C.; Chen, P.; Ho, K.-C.; Chu, C.-W. Monitoring the 3D Nanostructures of Bulk Heterojunction Polymer Solar Cells Using Confocal Lifetime Imaging. Anal. Chem. 2010, 82(5), 1669. DOI: 10.1021/ac901992c.
  • Moon, J. S.; Lee, J. K.; Cho, S.; Byun, J.; Heeger, A. J. “Columnlike” Structure of the Cross-Sectional Morphology of Bulk Heterojunction Materials. Nano Lett. 2009, 9(1), 230. DOI: 10.1021/nl802821h.
  • van Bavel, S. S.; Sourty, E.; de With, G.; Loos, J. Three-Dimensional Nanoscale Organization of Bulk Heterojunction Polymer Solar Cells. Nano Lett. 2009, 9(2), 507. DOI: 10.1021/nl8014022.
  • Frigerio, F.; Casalegno, M.; Carbonera, C.; Nicolini, T.; Meille, S. V.; Raos, G. Molecular Dynamics Simulations of the Solvent- and Thermal History-dependent Structure of the PCBM Fullerene Derivative. J. Mater. Chem. 2012, 22(12), 5434. DOI: 10.1039/c2jm16142g.
  • Peerless, J. S.; Hunter Bowers, G.; Kwansa, A. L.; Yingling, Y. G. Fullerenes in Aromatic Solvents: Correlation between Solvation-Shell Structure, Solvate Formation, and Solubility. J. Phys. Chem. B. 2015, 119(49), 15344. DOI: 10.1021/acs.jpcb.5b09386.
  • Mortuza, S. M.; Banerjee, S. Molecular Modeling Study of Agglomeration of [6,6]-phenyl-c61-butyric Acid Methyl Ester in Solvents. J. Chem. Phys. 2012, 137(24), 244308. DOI: 10.1063/1.4772759.
  • Rispens, M. T.; Meetsma, A.; Rittberger, R.; Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Influence of the Solvent on the Crystal Structure of PCBM and the Efficiency of MDMO-PPV:PCBM ‘plastic’ Solar Cells. Chem. Commun. 2003, (17), 2116. DOI: 10.1039/B305988J.
  • Reddy, S. Y.; Kuppa, V. K. Molecular Dynamics Simulations of Organic Photovoltaic Materials: Structure and Dynamics of Oligothiophene. J. Phys. Chem. C. 2012, 116(28), 14873. DOI: 10.1021/jp212548r.
  • Wang, C. I.; Hua, C. C. Solubility of C60 and PCBM in Organic Solvents The. J. Phys. Chem. B. 2015, 119(45), 14496. DOI: 10.1021/acs.jpcb.5b07399.
  • Alexiadis, O.; Mavrantzas, V. G. All-Atom Molecular Dynamics Simulation of Temperature Effects on the Structural, Thermodynamic, and Packing Properties of the Pure Amorphous and Pure Crystalline Phases of Regioregular P3HT. Macromolecules. 2013, 46(6), 2450. DOI: 10.1021/ma302211g.
  • Pani, R. C.; Bond, B. D.; Krishnan, G.; Yingling, Y. G. Correlating Fullerene Diffusion with the Polythiophene Morphology: Molecular Dynamics Simulations. Soft Matter. 2013, 9(42), 10048. DOI: 10.1039/c3sm51906f.
  • Meredig, B.; Salleo, A.; Gee, R. Ordering of Poly(3-hexylthiophene) Nanocrystallites on the Basis of Substrate Surface Energy. ACS Nano. 2009, 3(10), 2881. DOI: 10.1021/nn800707z.
  • Mortuza, S. M. Cisneros, C.; Bartolo, M.; Banerjee, S. Molecular Modeling of Nanoparticles and Conjugated Polymers during Synthesis of Photoactive Layers of Organic Photovoltaic Solar Cells, 2013. https://www.researchgate.net/profile/Sm_Mortuza/publication/267309003_Molecular_Modeling_of_Nanoparticles_and_Conjugated_Polymers_During_Synthesis_of_Photoactive_Layers_of_Organic_Photovoltaic_Solar_Cells/links/552392360cf29dcabb0f0468.pdf
  • Tummala, N. R.; Mehraeen, S.; Yao-Tsung, F.; Risko, C.; Brédas, J.-L. Materials-Scale Implications of Solvent and Temperature on [6,6]-phenyl-c61-butyric Acid Methyl Ester (PCBM): A Theoretical Perspective. Adv. Funct. Mater. 2013, 23(46), 5800. DOI: 10.1002/adfm.201300918.
  • Huang, D. M.; Faller, R.; Do, K.; Moulé, A. J. Coarse-Grained Computer Simulations of Polymer/Fullerene Bulk Heterojunctions for Organic Photovoltaic Applications. J. Chem. Theory Comput. 2010, 6(2), 526. DOI: 10.1021/ct900496t.
  • Lee, C.-K.; Pao, C.-W.; Chu, C.-W. Multiscale Molecular Simulations of the Nanoscale Morphologies of P3HT:PCBM Blends for Bulk Heterojunction Organic Photovoltaic Cells. Energy Environ. Sci. 2011, 4(10), 4124. DOI: 10.1039/c1ee01508g.
  • Lee, C.-K.; Pao, C.-W. Solubility of [6,6]-phenyl-c61-butyric Acid Methyl Ester and Optimal Blending Ratio of Bulk Heterojunction Polymer Solar Cells. J. Phys. Chem. C. 2012, 116(23), 12455. DOI: 10.1021/jp3028947.
  • Lee, C.-K.; Wodo, O.; Ganapathysubramanian, B.; Pao, C.-W. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations. ACS Appl. Mater. Interfaces. 2014, 6(23), 20612. DOI: 10.1021/am506015r.
  • Negi, V.; Lyulin, A.; Bobbert, P. Solvent-Dependent Structure Formation in Drying P3HT:PCBM Films Studied by Molecular Dynamics Simulations. Macromol. Theory Simul. 2016, 25(6), 550. DOI: 10.1002/mats.201600075.
  • Jankowski, E.; Marsh, H. S.; Jayaraman, A. Computationally Linking Molecular Features of Conjugated Polymers and Fullerene Derivatives to Bulk Heterojunction Morphology. Macromolecules. 2013, 46(14), 5775. DOI: 10.1021/ma400724e.
  • Carrillo, J.-M. Y.; Kumar, R.; Goswami, M.; Sumpter, B. G.; Brown, W. M. New Insights into the Dynamics and Morphology of P3HT:PCBM Active Layers in Bulk Heterojunctions. Phys. Chem. Chem. Phys. 2013, 15(41), 17873. DOI: 10.1039/c3cp53271b.
  • Carrillo, J.-M. Y.; Seibers, Z.; Kumar, R.; Matheson, M. A.; Ankner, J. F.; Goswami, M.; Bhaskaran-Nair, K.; Shelton, W. A.; Sumpter, B. G.; Kilbey, S. M. Petascale Simulations of the Morphology and the Molecular Interface of Bulk Heterojunctions. ACS Nano. 2016, 10(7), 7008. DOI: 10.1021/acsnano.6b03009.
  • Mortuza, S. M.; Kariyawasam, L. K.; Banerjee, S. Combined Deterministic-stochastic Framework for Modeling the Agglomeration of Colloidal Particles. Phys. Rev. E. 2015, 92(1), 013304. DOI: 10.1103/PhysRevE.92.013304.
  • To, T. T.; Adams, S. Modelling of P3HT:PCBM Interface Using Coarse-grained Forcefield Derived from Accurate Atomistic Forcefield. Phys. Chem. Chem. Phys. 2014, 16(10), 4653. DOI: 10.1039/c3cp54308k.
  • Garg, M.; Padmanabhan, V. Addition of P3HT-grafted Silica Nanoparticles Improves Bulk-heterojunction Morphology in P3HT-PCBM Blends. Sci. Rep. 2016, 6, 33219. DOI: 10.1038/srep33219.
  • Alessandri, R.; Uusitalo, J. J.; de Vries, A. H.; Havenith, R. W. A.; Marrink, S. J. Bulk Heterojunction Morphologies with Atomistic Resolution from Coarse-Grain Solvent Evaporation Simulations. J. Am. Chem. Soc. 2017, 139(10), 3697. DOI: 10.1021/jacs.6b11717.
  • Marrink, S. J.; Tieleman, D. P. Perspective on the Martini Model. Chem. Soc. Rev. 2013, 42(16), 6801. DOI: 10.1039/c3cs60093a.
  • Marcon, V.; Raos, G. Molecular Modeling of Crystalline Oligothiophenes: Testing and Development of Improved Forcefields The. J. Phys. Chem. B. 2004, 108(46), 18053. DOI: 10.1021/jp047128d.
  • Lee, C.-K.; Pao, C.-W. Nanomorphology Evolution of P3HT/PCBM Blends during Solution-Processing from Coarse-Grained Molecular Simulations. J. Phys. Chem. C. 2014, 118(21), 11224. DOI: 10.1021/jp501323p.
  • Munshi, J.; Ghumman, U. F.; Iyer, A.; Dulal, R.; Chen, W.; Chien, T.; Balasubramanian, G. Composition and Processing Dependent Miscibility of P3HT and PCBM in Organic Solar Cells by Coarse-grained Molecular Simulations. Comput. Mater. Sci. 2018, 155, 112. DOI: 10.1016/j.commatsci.2018.08.036.
  • Mortuza, S. M.; Banerjee, S. Atomistic Modelling – Impact and Opportunities in Thin-film Photovoltaic Solar Cell Technologies. Mol. Simul. 2017, 43(10–11), 774. DOI: 10.1080/08927022.2017.1295455.
  • Munshi, J.; Dulal, R.; Chien, T.; Chen, W.; Balasubramanian, G. Solution Processing Dependent Bulk Heterojunction Nanomorphology of P3HT: PCBM Thin Films. ACS Appl. Mater. Interfaces. 2019, 11, 17056. DOI: 10.1021/acsami.9b02719.
  • Jones, M. L.; Huang, D. M.; Chakrabarti, B.; Groves, C. Relating Molecular Morphology to Charge Mobility in Semicrystalline Conjugated Polymers. J. Phys. Chem. C. 2016, 120(8), 4240. DOI: 10.1021/acs.jpcc.5b11511.
  • Munshi, J.; Ghumman, U. F.; Iyer, A.; Dulal, R.; Chen, W.; Chien, T.; Balasubramanian, G. Effect of Polydispersity on the Bulk-heterojunction Morphology of P3HT:PCBM Solar Cells. J. Polym. Sci. B 2019, 57, 895. DOI: 10.1002/polb.24854.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.