108
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Molecular Dynamics Simulation on the Scaling Relation of Single Polymer Chain Diffusion on Single Wall Carbon Nanotube

, , , ORCID Icon &
Pages 177-184 | Received 31 Oct 2019, Accepted 30 Dec 2019, Published online: 08 Jan 2020

References

  • Arash, B.; Wang, Q.; Varadan, V. K. Mechanical Properties of Carbon Nanotube/Polymer Composites. Sci. Rep. 2014, 4, 6479. DOI: 10.1038/srep06479.
  • Tallury, S. S.; Pasquinelli, M. A. Molecular Dynamics Simulations of Flexible Polymer Chains Wrapping Single-Walled Carbon Nanotubes. J. Phys. Chem. B. 2010, 114(12), 4122–4129. DOI: 10.1021/jp908001d.
  • Haghighi, S.; Ansari, R.; Ajori, S. Influence of Polyethylene Cross-Linked Functionalization on the Interfacial Properties of Carbon Nanotube-Reinforced Polymer Nanocomposites: A Molecular Dynamics Study. J. Mol. Model. 2019, 25(4), 105. DOI: 10.1007/s00894-019-3983-x.
  • Doi, M.; Edwards, S. F. Theory of Polymer Dynamics; Clarendon: Oxford, 1986.
  • de Gennes, P.-G.;. Scaling Concepts in Polymer Physics; Cornell University: Ithaca, 1980.
  • Maier, B.; Rädler, J. O. DNA on Fluid Membranes: A Model Polymer in Two Dimensions. Macromolecules. 2000, 33(19), 7185–7194. DOI: 10.1021/ma000075n.
  • Maier, B.; Rädler, J. O. Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions. Phys. Rev. Lett. 1999, 82(9), 1911–1914. DOI: 10.1103/PhysRevLett.82.1911.
  • Sukhishvili, S. A.; Chen, Y.; Müller, J. D.; Schweizer, K. S.; Gratton, E.; Granick, S. Diffusion of a Polymer ‘pancake’. Nature. 2000, 406(6792), 146. DOI: 10.1038/35018166.
  • Sukhishvili, S. A.; Chen, Y.; Müller, J. D.; Schweizer, K. S.; Gratton, E.; Granick, S. Surface Diffusion of Poly(ethylene Glycol). Macromolecules. 2002, 35(5), 1776–1784. DOI: 10.1021/ma0113529.
  • Wong, J. S. S.; Hong, L.; Bae, S. C.; Granick, S. Polymer Surface Diffusion in the Dilute Limit. Macromolecules. 2011, 44(8), 3073–3076. DOI: 10.1021/ma1024939.
  • Hoda, N.; Kumar, S. Parameters Influencing Diffusion Dynamics of an Adsorbed Polymer Chain. Phys. Rev. E. 2009, 79(2), 020801. DOI: 10.1103/PhysRevE.79.020801.
  • Desai, T. G.; Keblinski, P.; Kumar, S. K.; Granick, S. Molecular-dynamics Simulations of the Transport Properties of a Single Polymer Chain in Two Dimensions. J. Chem. Phys. 2006, 124(8), 084904. DOI: 10.1063/1.2161197.
  • Desai, T. G.; Keblinski, P.; Kumar, S. K.; Granick, S. Modeling Diffusion of Adsorbed Polymer with Explicit Solvent. Phys. Rev. Lett. 2007, 98(21), 218301. DOI: 10.1103/PhysRevLett.98.218301.
  • Desai, T. G.; Keblinski, P.; Kumar, S. K. Polymer Chain Dynamics at Interfaces: Role of Boundary Conditions at Solid Interface. J. Chem. Phys. 2008, 128(4), 044903. DOI: 10.1063/1.2825293.
  • Qian, H. J.; Chen, L. J.; Lu, Z. Y.; Li, Z. S. Surface Diffusion Dynamics of a Single Polymer Chain in Dilute Solution. Phys. Rev. Lett. 2007, 99(6), 068301. DOI: 10.1103/PhysRevLett.99.068301.
  • Niu, Q.; Wang, D. Probing the Polymer Anomalous Dynamics at Solid/Liquid Interfaces at the Single-molecule Level. Curr. Opin. Colloid. 2019, 39, 162–172. DOI: 10.1016/j.cocis.2019.01.015.
  • Li, J.; Ding, M.; Zhang, R.; Shi, T. Effects of Surface Roughness on the Self-diffusion Dynamics of a Single Polymer. Soft. Matter. 2018, 14, 3550. DOI: 10.1039/C7SM02505J.
  • Li, J.; Zhang, R.; Ding, M. Unusual Self-diffusion Behaviors of Polymer Adsorbed on Rough Surfaces. J. Chem. Phys. 2019, 150, 064902. DOI: 10.1063/1.5085178.
  • Ye, Y.; Du, Z.; Tian, M.; Zhang, L.; Mi, J. Diffusive Dynamics of Polymer Chains in an Array of Nanoposts. Phys. Chem. Chem. Phys. 2017, 19(1), 380–387. DOI: 10.1039/C6CP07217H.
  • Mukherji, D.; Bartels, G.; Müser, M. H. Scaling Laws of Single Polymer Dynamics near Attractive Surfaces. Phys. Rev. Lett. 2008, 100(6), 068301. DOI: 10.1103/PhysRevLett.100.068301.
  • Zhao, X. T.; Yang, H.; Sheng, Y. Z.; Li, J. Y.; Sun, M. Molecular Dynamics Simulation on the Effect of the Distance between SWCNTs for Short Polymers Diffusion among Single Wall Carbon Nanotubes. Comput. Mater. Sci. 2014, 95, 446–450. DOI: 10.1016/j.commatsci.2014.08.009.
  • Liu, J.; Wang, X. L.; Zhao, L.; Zhang, G.; Lu, Z. Y.; Li, Z. S. The Absorption and Diffusion of Polyethylene Chains on the Carbon Nanotube: The Molecular Dynamics Study. J. Polym. Sci. B Polymer Phy. 2008, 46(3), 272–280. DOI: 10.1002/polb.21364.
  • Yang, J. S.; Yang, C. L.; Wang, M. S.; Chen, B. D.; Ma, X. G. Crystallization of Alkane Melts Induced by Carbon Nanotubes and Graphene Nanosheets: A Molecular Dynamics Simulation Study. Phys. Chem. Chem. Phys. 2011, 13(34), 15476. DOI: 10.1039/c1cp20695h.
  • Rahmat, M.; Hubert, P. Carbon Nanotube-polymer Interactions in Nanocomposites: A Review. Compos. Sci. Technol. 2011, 72(1), 72–84. DOI: 10.1016/j.compscitech.2011.10.002.
  • Sun, H.;. Compass: An Ab Initio Force-field Optimized for Condensed-phase Applications Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B. 1998, 102, 7338–7364. DOI: 10.1021/jp980939v.
  • Sun, H.;. Ab Initio Calculations and Force Field Development for Computer Simulation of Polysilanes. Macromolecules. 1995, 28(3), 701–712. DOI: 10.1021/ma00107a006.
  • Sun, H.; Ren, P.; Fried, J. R. The Compass Force Field: Parameterization and Validation for Phosphazenes. Comput. Theor. Polym. Sci. 1998, 8(1), 229–246. DOI: 10.1016/S1089-3156(98)00042-7.
  • Nosé, S.;. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255−268.
  • Nosé, S.;. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511−519.
  • Nosé, S.;. Constant Temperature Molecular Dynamics Methods. Prog. Theor. Phys. Supp. 1991, 103, 1–46. DOI: 10.1143/PTPS.103.1.
  • Hoover, W. G.;. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A. 1985, 31, 1695−1697.
  • Charati, S. G.; Stern, S. A. Diffusion of Gases in Silicone Polymers: Molecular Dynamics Simulations. Macromolecules. 1998, 31(16), 5529–5535. DOI: 10.1021/ma980387e.
  • Ramírez, J.; Sukumaran, S. K.; Vorselaars, B.; Likhtman, A. E. Efficient on the Fly Calculation of Time Correlation Functions in Computer Simulations. J. Chem. Phys. 2010, 133(15), 154103. DOI: 10.1063/1.3491098.
  • Mu, M. F.; Composto, R. J.; Clarke, N.; Winey, K. I. Minimum in Diffusion Coefficient with Increasing MWCNT Concentration Requires Tracer Molecules to Be Larger than Nanotubes. Macromolecules. 2009, 42(21), 8365–8369. DOI: 10.1021/ma9014033.
  • Yang, H.; Liu, Y.; Zhang, H.; Li, Z. S. Diffusion of Single Alkane Molecule in Carbon Nanotube Studied by Molecular Dynamics Simulation. Polymer. 2006, 47(21), 7607–7610. DOI: 10.1016/j.polymer.2006.08.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.