853
Views
10
CrossRef citations to date
0
Altmetric
Research Article

The performance of Dunning, Jensen, and Karlsruhe basis sets on computing relative energies and geometries

, &
Pages 200-214 | Received 19 Nov 2019, Accepted 03 Jan 2020, Published online: 11 Feb 2020

References

  • Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90(2), 1007–1023. DOI: 10.1063/1.456153.
  • Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron Affinities of the First-row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96(9), 6796–6806. DOI: 10.1063/1.462569.
  • Woon, D. E.; Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98(2), 1358–1371. DOI: 10.1063/1.464303.
  • Wilson, A. K.; van Mourik, T.; Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. VI. Sextuple Zeta Correlation Consistent Basis Sets for Boron through Neon. J. Mol. Struc. Theochem. 1996, 388, 339–349. DOI: 10.1016/S0166-1280(96)04689-1.
  • Jensen, F. Polarization Consistent Basis Sets: Principles. J. Chem. Phys. 2001, 115(20), 9113–9125. DOI: 10.1063/1.1413524.
  • Jensen, F. Erratum: “Polarization Consistent Basis Sets: Principles” [J. Chem. Phys. 115, 9113 (2001)]. J. Chem. Phys. 2002, 116(8), 3502. DOI: 10.1063/1.1445402.
  • Jensen, F. Polarization Consistent Basis Sets. III. The Importance of Diffuse Functions. J. Chem. Phys. 2002, 117(20), 9234–9240. DOI: 10.1063/1.1515484.
  • Jensen, F. Polarization Consistent Basis Sets. IV. The Basis Set Convergence of Equilibrium Geometries, Harmonic Vibrational Frequencies, and Intensities. J. Chem. Phys. 2003, 118(6), 2459–2463. DOI: 10.1063/1.1535905.
  • Jensen, F. Unifying General and Segmented Contracted Basis Sets. Segmented Polarization Consistent Basis Sets. J. Chem. Theory Comput. 2014, 10(3), 1074–1085. DOI: 10.1021/ct401026a.
  • Jensen, F. Segmented Contracted Basis Sets Optimized for Nuclear Magnetic Shielding. J. Chem. Theory Comput. 2015, 11(1), 132–138. DOI: 10.1021/ct5009526.
  • Hellweg, A.; Rappoport, D. Development of New Auxiliary Basis Functions of the Karlsruhe Segmented Contracted Basis Sets Including Diffuse Basis Functions (Def2-svpd, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC Calculations. Phys. Chem. Chem. Phys. 2015, 17, 1010–1017. DOI: 10.1039/C4CP04286G.
  • Rappoport, D.; Furche, F. Property-optimized Gaussian Basis Sets for Molecular Response Calculations. J. Chem. Phys. 2010, 133(13), 134105. DOI: 10.1063/1.3484283.
  • Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97(4), 2571–2577. DOI: 10.1063/1.463096.
  • Schäfer, A.; Huber, C.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr. J. Chem. Phys. 1994, 100(8), 5829–5835. DOI: 10.1063/1.467146.
  • Weigend, F.;. Accurate Coulomb-fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8(9), 1057–1065. DOI: 10.1039/b515623h.
  • Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
  • Kupka, T.; Lim, C. Polarization–consistent versus Correlation–consistent Basis Sets in Predicting Molecular and Spectroscopic Properties. J. Phys. Chem. A. 2007, 111(10), 1927–1932. DOI: 10.1021/jp065008v.
  • Kupka, T.; Buczek, A.; Broda, M. A.; Mnich, A.; Kar, T. Performance of Polarization-consistent Vs. Correlation-consistent Basis Sets for CCSD(T) Prediction of Water Dimer Interaction Energy. J. Mol. Model. 2019, 25(10), 313. DOI: 10.1007/s00894-019-4200-7.
  • ElSohly, A. M.; Tschumper, G. S. Comparison of Polarization Consistent and Correlation Consistent Basis Sets for Noncovalent Interactions. Int. J. Quantum Chem. 2009, 109(1), 91–96. DOI: 10.1002/qua.v109:1.
  • Jurečka, P.; Šponer, J.; Černý, J.; Hobza, P. Benchmark Database of Accurate (MP2 and CCSD(T) Complete Basis Set Limit) Interaction Energies of Small Model Complexes, DNA Base Pairs, and Amino Acid Pairs. Phys. Chem. Chem. Phys. 2006, 8, 1985–1993. DOI: 10.1039/B600027D.
  • Grimme, S.; Steinmetz, M. Effects of London Dispersion Correction in Density Functional Theory on the Structures of Organic Molecules in the Gas Phase. Phys. Chem. Chem. Phys. 2013, 15, 16031–16042. DOI: 10.1039/c3cp52293h.
  • Hyla-Kryspin, I.; Grimme, S.; Hruschka, S.; Haufe, G. Conformational Preferences and Basicities of Monofluorinated Cyclopropyl Amines in Comparison to Cyclopropylamine and 2-fluoroethylamine. Org. Biomol. Chem. 2008, 6, 4167–4175. DOI: 10.1039/b810108f.
  • Kozuch, S.; Bachrach, S. M.; Martin, J. M. Conformational Equilibria in Butane-1,4-diol: A Benchmark of A Prototypical System with Strong Intramolecular H-bonds. J. Phys. Chem. A. 2014, 118(1), 293–303. DOI: 10.1021/jp410723v.
  • Johansson, M. P.; Olsen, J. Torsional Barriers and Equilibrium Angle of Biphenyl: Reconciling Theory with Experiment. J. Chem. Theory Comput. 2008, 4(9), 1460–1471. DOI: 10.1021/ct800182e.
  • Witte, J.; Neaton, J. B.; Head-Gordon, M. Push It to the Limit: Characterizing the Convergence of Common Sequences of Basis Sets for Intermolecular Interactions as Described by Density Functional Theory. J. Chem. Phys. 2016, 144(19), 194306. DOI: 10.1063/1.4949536.
  • DeLano, W. L.; Schrödinger, L. L. C. The PyMOL Molecular Graphics System, Version 1.7.0.0. 2015. Accessed January 21, 2020. https://github.com/schrodinger/pymol-open-source.
  • Tschumper, G. S.; Leininger, M. L.; Hoffman, B. C.; Valeev, E. F.; Schaefer, H. F., III; Quack, M. Anchoring the Water Dimer Potential Energy Surface with Explicitly Correlated Computations and Focal Point Analyses. J. Chem. Phys. 2002, 116(2), 690–701. DOI: 10.1063/1.1408302.
  • Kendall, A. R.; Früchtl, A. H. The Impact of the Resolution of the Identity Approximate Integral Method on Modern Ab Initio Algorithm Development. Theor. Chem. Acc. 1997, 97(1), 158–163. DOI: 10.1007/s002140050249.
  • Vahtras, O.; Almlöf, J.; Feyereisen, M. Integral Approximations for LCAO-SCF Calculations. Chem. Phys. Lett. 1993, 213(5), 514–518. DOI: 10.1016/0009-2614(93)89151-7.
  • Hättig, C. Optimization of Auxiliary Basis Sets for RI-MP2 and RI-CC2 Calculations: Core-valence and quintuple-ς Basis Sets for H to Ar and QZVPP Basis Sets for Li to Kr. Phys. Chem. Chem. Phys. 2005, 7, 59–66. DOI: 10.1039/B415208E.
  • Weigend, F.;. A Fully Direct RI-HF Algorithm: Implementation, Optimised Auxiliary Basis Sets, Demonstration of Accuracy and Efficiency. Phys. Chem. Chem. Phys. 2002, 4, 4285–4291. DOI: 10.1039/b204199p.
  • Weigend, F.;. Hartree–Fock Exchange Fitting Basis Sets for H to Rn. J. Comput. Chem. 2008, 29(2), 167–175. DOI: 10.1002/(ISSN)1096-987X.
  • Weigend, F.; Köhn, A.; Hättig, C. Efficient Use of the Correlation Consistent Basis Sets in Resolution of the Identity MP2 Calculations. J. Chem. Phys. 2002, 116(8), 3175–3183. DOI: 10.1063/1.1445115.
  • He, Y.; Cremer, D. Molecular Geometries at Sixth Order Møller-Plesset Perturbation Theory. At What Order Does MP Theory Give Exact Geometries? J. Phys. Chem. A. 2000, 104(32), 7679–7688. DOI: 10.1021/jp0014770.
  • Feller, D. Application of Systematic Sequences of Wave Functions to the Water Dimer. J. Chem. Phys. 1992, 96(8), 6104–6114. DOI: 10.1063/1.462652.
  • Feller, D. The Use of Systematic Sequences of Wave Functions for Estimating the Complete Basis Set, Full Configuration Interaction Limit in Water. J. Chem. Phys. 1993, 98(9), 7059–7071. DOI: 10.1063/1.464749.
  • Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.; Olsen, J.; Wilson, A. K. Basis-set Convergence in Correlated Calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998, 286(3–4), 243–252. DOI: 10.1016/S0009-2614(98)00111-0.
  • Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. Basis-set Convergence of Correlated Calculations on Water. J. Chem. Phys. 1997, 106(23), 9639–9646. DOI: 10.1063/1.473863.
  • Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; DePrince, A. E.; Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M.; et al. Psi4 1.1: An Open-source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13(7), 3185–3197. DOI: 10.1021/acs.jctc.7b00174.
  • Roe, D. R.; Cheatham, T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9(7), 3084–3095. DOI: 10.1021/ct400341p.
  • Python software foundation. Python Language Reference, Version 3.4.3. Accessed July 1st, 2019. http://www.python.org.
  • van Rossum, G. Python Tutorial. Technical Report CS-R9526; Centrum voor Wiskunde en Informatica (CWI): Amsterdam, 1995.
  • Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9(3), 90–95. DOI: 10.1109/MCSE.2007.55.
  • Waskom, M.; O. Botvinnik, D.; Hobson, P.; David, Y. H.; Lukauskas, S.; Cole, J. B.; Warmenhoven, J.; de Ruiter, J.; Hoyer, S.; Vanderplas, J.; et al. Seaborn: V0.7.1 (June 2016), 2016.
  • Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
  • Feller, D.; Craig, N. C. High Level Ab Initio Energies and Structures for the Rotamers of 1,3-butadiene. J. Phys. Chem. A. 2009, 113(8), 1601–1607. PMID: 19199679. DOI: 10.1021/jp8095709.
  • Kirschner, K. N.; Heiden, W.; Reith, D. Small Alcohols Revisited: CCSD(T) Relative Potential Energies for the Minima, First- and Second-order Saddle Points, and Torsion-coupled Surfaces. ACS Omega. 2018, 3(1), 419–432. DOI: 10.1021/acsomega.7b01367.
  • Woon, D. E.; Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. V. Core-valence Basis Sets for Boron through Neon. J. Chem. Phys. 1995, 103(11), 4572–4585. DOI: 10.1063/1.470645.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.