431
Views
10
CrossRef citations to date
0
Altmetric
Research Article

A machine learning approach to analyze the structural formation of soft matter via image recognition

Pages 215-227 | Received 29 Oct 2019, Accepted 08 Jan 2020, Published online: 20 Jan 2020

References

  • Nelson, D. R.; Halperin, B. I. Dislocation-Mediated Melting in Two Dimensions. Phys. Rev. B. 1979, 19, 2457–2484. DOI: 10.1103/PhysRevB.19.2457.
  • Steinhardt, P.; Nelson, D.; Ronchetti, M. Bond-Orientational Order in Liquids and Glasses. Phys. Rev. B. 1983, 28, 784–805. DOI: 10.1103/PhysRevB.28.784.
  • Ten Wolde, P.; Ruiz-Montero, M.; Frenkel, D. Numerical Evidence for Bcc Ordering at the Surface of a Critical Fcc Nucleus. Phys. Rev. Lett. 1995, 75, 2714–2717. DOI: 10.1103/PhysRevLett.75.2714.
  • Mickel, W.; Kapfer, S. C.; Schröder-Turk, G. E.; Mecke, K. Shortcomings of the Bond Orientational Order Parameters for the Analysis of Disordered Particulate Matter. J. Chem. Phys. 2013, (2013)(138), 044501. DOI: 10.1063/1.4774084.
  • Lechner, W.; Dellago, C. Accurate Determination of Crystal Structures Based on Averaged Local Bond Order Parameters. J. Chem. Phys. 2008, 129, 114707. DOI: 10.1063/1.2977970.
  • Mizuno, R.; Okumura, K.; Oguri, J.; Terao, T. Generalised Local Bond Order Parameter Analysis: Application to Colloidal Particles with Dendritic Polymer Brushes. Mol. Simul. 2019, 45, 743–751. DOI: 10.1080/08927022.2019.1582774.
  • Eslami, H.; Sedaghat, P.; Müller-Plathe, F. Local Bond Order Parameters for Accurate Determination of Crystal Structures in Two and Three Dimensions. Phys. Chem. Chem. Phys. 2018, 20, 27059–27068. DOI: 10.1039/C8CP05248D.
  • Prestipino, S.; Saija, F.; Giaquinta, P. V. Hexatic Phase and Water-like Anomalies in a Two-Dimensional Fluid of Particles with a Weakly Softened Core. J. Chem. Phys. 2012, 137, 104503. DOI: 10.1063/1.4749260.
  • Bernard, E. P.; Krauth, W. Two-step Melting in Two Dimensions: First-Order Liquid-Hexatic Transition. Phys. Rev. Lett. 2011, 107, 155704. DOI: 10.1103/PhysRevLett.107.155704.
  • Kosterlitz, J. M.; Thouless, D. J. Ordering, Metastability and Phase Transitions in Two-Dimensional Systems. J. Phys. C. 1973, 6, L1181–L1203. DOI: 10.1088/0022-3719/6/7/010.
  • Halperin, B. I.; Nelson, D. R. Theory of Two-Dimensional Melting. Phys. Rev. Lett. 1978, 41, 121–124. DOI: 10.1103/PhysRevLett.41.121.
  • Young, A. P.;. Melting and the Vector Coulomb Gas in Two Dimensions. Phys. Rev. B. 1979, 19, 1855–1866. DOI: 10.1103/PhysRevB.19.1855.
  • Strandburg, K. J.;. Two-Dimensional Melting. Rev. Mod. Phys. 1988, 60, 161–207. DOI: 10.1103/RevModPhys.60.161.
  • Malescio, G.; Saija, F.; Prestipino, S. Anomalous Melting Behavior under Extreme Conditions: Hard Matter Turning “Soft”. J. Chem. Phys. 2008, 129, 241101. DOI: 10.1063/1.3050315.
  • Buldyrev, S. V.; Malescio, G.; Angell, C. A.; Giovambattista, N.; Prestipino, S.; Saija, F.; Stanley, H. E.; Xu, L. Unusual Phase Behavior of One-Component Systems with Two-Scale Isotropic Interactions. J. Phys.: Condens. Matter. 2009, 21, 504106. DOI: 10.1088/0953-8984/21/50/504106.
  • Saija, F.; Prestipino, S.; Malescio, G. Anomalous Phase Behavior of a Soft- Repulsive Potential with a Strictly Monotonic Force. Phys. Rev. E. 2009, 80, 031502. DOI: 10.1103/PhysRevE.80.031502.
  • Jagla, E. A.;. Phase Behavior of a System of Particles with Core Collapse. Phys. Rev. E. 1998, 58, 1478–1486. DOI: 10.1103/PhysRevE.58.1478.
  • Camp, P. J.;. Structure and Phase Behavior of a Two-Dimensional System with Core-Softened and Long-Range Repulsive Interactions. Phys. Rev. E. 2003, (2003)(68), 061506. DOI: 10.1103/PhysRevE.68.061506.
  • Malescio, G.; Pellicane, G. Stripe Phases from Isotropic Repulsive Interactions. Nat. Mater. 2003, 2, 97–100. DOI: 10.1038/nmat820.
  • Norizoe, Y.; Kawakatsu, T. Monte Carlo Simulation of String-like Colloidal Assembly. Europhys. Lett. 2005, 72, 583–589. DOI: 10.1209/epl/i2005-10288-6.
  • Glaser, M. A.; Grason, G. M.; Kamien, R. D.; Košmrlj, A.; Santangelo, C. D.; Ziherl, P. Soft Spheres Make More Mesophases. EPL. 2007, 78, 46004. DOI: 10.1209/0295-5075/78/46004.
  • Dotera, T.; Oshiro, T.; Ziherl, P. Mosaic Two-Lengthscale Quasicrystals. Nature. 2014, 506, 208–211. DOI: 10.1038/nature12938.
  • Pattabhiraman, H.; Gantapara, A. P.; Dijkstra, M. On the Stability of a Quasicrystal and Its Crystalline Approximant in a System of Hard Disks with a Soft Corona. J. Chem. Phys. 2015, 143, 164905. DOI: 10.1063/1.4934499.
  • Archer, A. J.; Rucklidge, A. M.; Knobloch, E. Soft-Core Particles Freezing to Form a Quasicrystal and a Crystal-Liquid Phase. Phys. Rev. E. 2005, 92, 012324. DOI: 10.1103/PhysRevE.92.012324.
  • Schoberth, H. G.; Emmerich, H.; Holzinger, M.; Dulle, M.; Förster, S.; Gruhn, T. Molecular Dynamics Study of Colloidal Quasicrystals. Soft Matter. 2016, 12, 7644–7654. DOI: 10.1039/C6SM01454B.
  • Gabriëlse, A.; Löwen, H.; Smallenburg, F. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model. Materials. 2017, 10, 1280. DOI: 10.3390/ma10111280.
  • Pattabhiraman, H.; Dijkstra, M. Phase Behaviour of Quasicrystal Forming Systems of Core-Corona Particles. J. Chem. Phys. 2017, 146, 114901. DOI: 10.1063/1.4977934.
  • Geiger, P.; Dellago, C. Neural Networks for Local Structure Detection in Polymorphic Systems. J. Chem. Phys. 2013, 139, 164105. DOI: 10.1063/1.4825111.
  • DeFever, R. S.; Targonski, C.; Hall, S. W.; Smith, M. C.; Sarupria, S. A Generalized Deep Learning Approach for Local Structure Identification in Molecular Simulations. Chem. Sci. 2019, 10, 7503. DOI: 10.1039/C9SC02097G.
  • Fulford, M.; Salvalaglio, M.; Molteni, C. DeepIce: A Deep Neural Network Approach to Identify Ice and Water Molecules. J. Chem. Inf. Model. 2019, 59, 2141. DOI: 10.1021/acs.jcim.9b00005.
  • Ferguson, A. L.;. Machine Learning and Data Science in Soft Materials Engineering. J. Phys. Condens Matter. 2018, 30, 043002.
  • Jackson, N. E.; Webb, M. A.; de Pablo, J. J. Recent Advances in Machine Learning Towards Multiscale Soft Materials Design. Curr. Opin. Chem. Eng. 2019, 23, 106. DOI: 10.1016/j.coche.2019.03.005.
  • Phillips, C. L.; Voth, G. A. Discovering Crystals Using Shape Matching and Machine Learning. Soft Matter 2013, 9, 8552. (2013). DOI: 10.1039/C3SM51449H.
  • Schoenholz, S. S.; Cubuk, E. D.; Sussman, D. M.; Kaxiras, E.; Liu, A. J. A Structural Approach to Relaxation in Glassy Liquids. Nat. Phys. 2016, 12, 469. DOI: 10.1038/NPHYS3644.
  • Schoenholz, S. S.; Cubuk, E. D.; Kaxiras, E.; Liu, A. J. Relationship between Local Structure and Relaxation in Out-of-Equilibrium Glassy Systems. Proc. Natl. Acad. Sci. 2017, 114, 263. DOI: 10.1073/pnas.1610204114.
  • Cubuk, E. D.; Ivancic, R. J. S.; Schoenholz, S. S.; Strickland, D. J.; Basu, A.; Davidson, Z. S.; Fontaine, J.; Hor, J. L.; Huang, Y.-R.; Jiang, Y.; et al. Structure-Property Relationships from Universal Signatures of Plasticity in Disordered Solids. Science. 2017, 358, 1033. DOI: 10.1126/science.aai8830.
  • Reinhardt, W. S.; Long, A. W.; Howard, M. P.; Ferguson, A. L.; Panagiotopouls, A. Z. Machine Learning for Autonomous Crystal Structure Identification. Soft Matter. 2017, 13, 4733. DOI: 10.1039/C7SM00957G.
  • Reinhardt, W. S.; Panagiotopouls, A. Z. Multi-Atom Pattern Analysis for Binary Superlattices. Soft Matter. 2017, 13, 6803. DOI: 10.1039/C7SM01642E.
  • Reinhardt, W. S.; Panagiotopouls, A. Z. Automated Crystal Characterization with a Fast Neighborhood Graph Analysis Method. Soft Matter. 2018, 14, 6083. DOI: 10.1039/C8SM00960K.
  • Spellings, M.; Glotzer, S. C. Machine Learning for Crystal Identification and Discovery. AIChE J. 2018, 64, 2198. DOI: 10.1002/aic.16157.
  • Jadrich, R. B.; Lindquist, B. A.; Truskett, T. M. Unsupervised Machine Learning for Detection of Phase Transitions in Off-Lattice Systems. I. Foundations. J. Chem. Phys. 2018, 149, 194109. DOI: 10.1063/1.5049849.
  • Jadrich, R. B.; Lindquist, B. A.; Pineros, W. D.; Banerjee, D.; Truskett, T. M. Unsupervised Machine Learning for Detection of Phase Transitions in Off-Lattice Systems. II. Applications. J. Chem. Phys. 2018, 149, 194110. DOI: 10.1063/1.5049850.
  • Rajasekaran, K.; Samani, E.; Bollavaram, M.; Stewart, J.; Banerjee, A. G. An Accurate Perception Method for Low Contrast Bright Field Microscopy in Heterogeneous Microenvironments. Appl. Sci. 2017, 7, 1327. DOI: 10.3390/app7121327.
  • Xing, F.; Xie, Y.; Su, H.; Liu, F.; Yang, L. Deep Learning in Microscopy Image Analysis: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 4550–4568. DOI: 10.1109/TNNLS.2017.2766168.
  • Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature. 2015, 521, 436–444. DOI: 10.1038/nature14539.
  • Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge MA, 2016.
  • Chollet, F.;. Deep Learning with Python; Manning: New York, 2018.
  • Terao, T.;. Monte Carlo Simulation of Polymer–Nanoparticle Composites. Chem. Lett. 2012, 41, 1425–1427. DOI: 10.1246/cl.2012.1425.
  • Meng, D.; Kumar, S. K.; Lane, J. M. D.; Grest, G. S. Effective Interactions between Grafted Nanoparticles in a Polymer Matrix. Soft Matter. 2012, 8, 5002–5010. DOI: 10.1039/C2SM07395A.
  • Stillinger, F. H.;. Phase Transitions in the Gaussian Core System. J. Chem. Phys. 1976, 65, 3968–3974. DOI: 10.1063/1.432891.
  • Mladek, B. M.; Gottwald, D.; Kahl, G.; Neumann, M.; Likos, C. N. Clustering in the Absence of Attractions: Density Functional Theory and Computer Simulations. J. Phys. Chem. B. 2007, 111, 12799–12808. DOI: 10.1021/jp074652m.
  • Wilding, N. B.; Sollich, P. Demixing Cascades in Cluster Crystals. J. Chem. Phys. 2014, 141, 094903. DOI: 10.1063/1.4894374.
  • Plimpton, S.;. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 1995, 117, 1–19. DOI: 10.1006/jcph.1995.1039.
  • Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids. 2nd ed.; Oxford: Oxford university press; 2017.
  • Prestipino, S.; Saija, F.; Giaquinta, P. V. Hexatic Phase in the Two-Dimensional Gaussian-Core Model. Phys. Rev. Lett. 2011, 106, 235701. DOI: 10.1103/PhysRevLett.106.235701.
  • Broughton, J. Q.; Gilmer, G. H.; Weeks, J. D. Molecular-Dynamics Study of Melting in Two Dimensions. Inverse-Twelfth-Power Interaction. Phys. Rev. B. 1982, 25, 4651. DOI: 10.1103/PhysRevB.25.4651.
  • Ramakrishnan, T. V.;. Density-Wave Theory of First-Order Freezing in Two Dimensions. Phys. Rev. Lett. 1982, 48, 541. DOI: 10.1103/PhysRevLett.48.541.
  • Ranganathan, S.; Pathak, K. N. Freezing Transition of Two-dimensional Lennard-Jones Fluids. Phys. Rev. A. 1992, 45, 5789. DOI: 10.1103/PhysRevA.45.5789.
  • Caillol, J. M.; Levesque, D.; Weis, J. J.; Hansen, J. P. A Monte Carlo Study of the Classical Two-Dimensional One-Component Plasma. J. Stat. Phys. 1982, 28, 325. DOI: 10.1007/BF01012609.
  • Wang, Z.; Alsayed, A. M.; Yodh, A. G.; Han, Y. Two-Dimensional Freezing Criteria for Crystallizing Colloidal Monolayers. J. Chem. Phys. 2010, 132, 154501. DOI: 10.1063/1.3372618.
  • Grest, G. S.; Kremer, K. Molecular Dynamics Simulation for Polymers in the Presence of a Heat Bath. Phys. Rev. A. 1986, 33, 3628–3631. DOI: 10.1103/PhysRevA.33.3628.
  • Kremer, K.; Grest, G. S. Dynamics of Entangled Linear Polymer Melts: A Molecular-Dynamics Simulation. J. Chem. Phys. 1990, 92, 5057–5086. DOI: 10.1063/1.458541.
  • Breiman, L.;. Random Forests. Mach. Learn. 2001, 45, 5–32. DOI: 10.1023/A:1010933404324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.