209
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Generation of well relaxed all atom models of stereoregular polymers: a validation of hybrid particle-field molecular dynamics for polypropylene melts of different tacticities

ORCID Icon, , , , , & show all
Pages 228-241 | Received 29 Oct 2019, Accepted 12 Jan 2020, Published online: 25 Jan 2020

References

  • Flory, P. J. On the Stereochemical Constitution and Nuclear Magnetic Resonance Spectra of Polypropylenes. Macromolecules. 1970, 3, 613–617. DOI: 10.1021/ma60017a601.
  • Stehling, F. C. Stereochemical Configurations of Polypropenes by High Resolution Nuclear Magnetic Resonance. J. Polym. Sci. Part A Gen. Pap. 1964, 2, 1815–1823. DOI: 10.1002/pol.1964.100020422.
  • Callan, J. F.; Fawcett, A. H.; Malcolm, R. K. The Effect of Tacticity on the Conformational Properties of Poly(1-olefin Sulfone)s. J. Polym. Res. 2008, 15, 107–113. DOI: 10.1007/s10965-007-9149-z.
  • Moore, E. P. Polypropylene Handbook: Polymerization, Characterization, Properties, Processing, Applications; Hanser, Cincinnati, 1996.
  • Fink, J. K. Reactive Polymers: Fundamentals and Applications: A Concise Guide to Industrial Polymers; Plastics Design Library Elsevier Science, U.S., 2017.
  • Geng, K.; Tsui, O. K. C. Effects of Polymer Tacticity and Molecular Weight on the Glass Transition Temperature of Poly(methyl Methacrylate) Films on Silica. Macromolecules. 2016, 49, 2671–2678. DOI: 10.1021/acs.macromol.6b00108.
  • Madkour, T. M.; Mark, J. E. Modeling of the Crystallization of Isotactic Polypropylene Chains. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 2757–2764. DOI: 10.1002/(ISSN)1099-0488.
  • Arrighi, V.; Batt-Coutrot, D.; Zhang, C.; Telling, M. T. F.; Triolo, A. Effect of Tacticity on the Local Dynamics of Polypropylene Melts. J. Chem. Phys. 2003, 119, 1271–1278. DOI: 10.1063/1.1579476.
  • Eckstein, A.; Suhm, J.; Friedrich, C.; Maier, R. D.; Sassmannshausen, J.; Bochmann, M.; Mülhaupt, R. Determination of Plateau Moduli and Entanglement Molecular Weights of Isotactic, Syndiotactic, and Atactic Polypropylenes Synthesized with Metallocene Catalysts. Macromolecules. 1998, 31, 1335–1340. DOI: 10.1021/ma971270d.
  • Ahmad, N.; Di Girolamo, R.; Auriemma, F.; De Rosa, C.; Grizzuti, N. Relations between Stereoregularity and Melt Viscoelasticity of Syndiotactic Polypropylene. Macromolecules. 2013, 46, 7940–7946. DOI: 10.1021/ma401469a.
  • Chile, L. E.; Mehrkhodavandi, P.; Hatzikiriakos, S. G. A Comparison of the Rheological and Mechanical Properties of Isotactic, Syndiotactic, and Heterotactic Poly(lactide). Macromolecules. 2016, 49, 909–919. DOI: 10.1021/acs.macromol.5b02568.
  • Zhongde, X.; Hadjichristidis, N.; Carella, J. M.; Fetters, L. J. Characteristic Ratios of Atactic Poly(vinylethylene) and Poly(ethylethylene). Macromolecules. 1983, 16, 925–929. DOI: 10.1021/ma00240a019.
  • Xu, Z.; Hadjichristidis, N.; Fetters, L. J.; Mays, J. W. Structure/chain-flexibility Relationships of Polymers BT - Physical Properties of Polymers; Springer Berlin Heidelberg: Berlin, Heidelberg, 1995; pp 1–50.
  • Fetters, L. J.; Graessley, W. W.; Krishnamoorti, R.; Lohse, D. J. Melt Chain Dimensions of Poly(ethylene−1-butene) Copolymers via Small Angle Neutron Scattering. Macromolecules. 1997, 30, 4973–4977. DOI: 10.1021/ma961408c.
  • Smith, G. D.; Yoon, D. Y.; Jaffe, R. L.; Colby, R. H.; Krishnamoorti, R.; Fetters, L. J. Conformations and Structures of Poly(oxyethylene) Melts from Molecular Dynamics Simulations and Small-Angle Neutron Scattering Experiments. Macromolecules. 1996, 29, 3462–3469. DOI: 10.1021/ma951621t.
  • Suter, U. W.; Flory, P. J. Conformational Energy and Configurational Statistics of Polypropylene. Macromolecules. 1975, 8, 765–776. DOI: 10.1021/ma60048a018.
  • Boyd, R. H.; Breitling, S. M. Conformational Properties of Polypropylene1. Macromolecules. 1972, 5, 279–286. DOI: 10.1021/ma60027a010.
  • Theodorou, D. N.; Suter, U. W. Shape of Unperturbed Linear Polymers: Polypropylene. Macromolecules. 2002, 18, 1206–1214. DOI: 10.1021/ma00148a028.
  • Antoniadis, S. J.; Samara, C. T.; Theodorou, D. N. Molecular Dynamics of Atactic Polypropylene Melts. Macromolecules. 1998, 31, 7944–7952. DOI: 10.1021/ma9807318.
  • Antoniadis, S. J.; Samara, C. T.; Theodorou, D. N. Effect of Tacticity on the Molecular Dynamics of Polypropylene Melts. Macromolecules. 1999, 32, 8635–8644. DOI: 10.1021/ma990888f.
  • Tzounis, P. N.; Argyropoulou, D. V.; Anogiannakis, S. D.; Theodorou, D. N. Tacticity Effect on the Conformational Properties of Polypropylene and Poly(ethylene-propylene) Copolymers. Macromolecules. 2018, 51, 6878–6891. DOI: 10.1021/acs.macromol.8b01099.
  • Fritz, D.; Harmandaris, V. A.; Kremer, K.; Van Der Vegt, N. F. A. Coarse-grained Polymer Melts Based on Isolated Atomistic Chains: Simulation of Polystyrene of Different Tacticities. Macromolecules. 2009, 42, 7579–7588. DOI: 10.1021/ma901242h.
  • Chiessi, E.; Paradossi, G. Influence of Tacticity on Hydrophobicity of Poly(N-isopropylacrylamide): A Single Chain Molecular Dynamics Simulation Study. J. Phys. Chem. B. 2016, 120, 3765–3776. DOI: 10.1021/acs.jpcb.6b01339.
  • Lu, K. T.; Tung, K. L. Molecular Dynamics Simulation Study of the Effect of PMMA Tacticity on Free Volume Morphology in Membranes. Korean J. Chem. Eng. 2005, 22, 512–520. DOI: 10.1007/BF02706635.
  • Noorjahan, A.; Choi, P. Thermodynamic Properties of Poly(vinyl Alcohol) with Different Tacticities Estimated from Molecular Dynamics Simulation. Polymer (Guildf). 2013, 54, 4212–4219. DOI: 10.1016/j.polymer.2013.05.073.
  • Soldera, A. Energetic Analysis of the Two PMMA Chain Tacticities and PMA through Molecular Dynamics Simulations. Polymer (Guildf). 2002, 43, 4269–4275. DOI: 10.1016/S0032-3861(02)00240-9.
  • Baschnagel, J.; Binder, K.; Doruker, P.; Gusev, A. A.; Hahn, O.; Kremer, K.; Mattice, W.L.; Müller-Plathe, F.; Murat, M.; Paul, W.; et al. Bridging the Gap between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives. Viscoelasticity At. Model. Stat. Chem. 2000, 152, 41–156.
  • De Nicola, A.; Kawakatsu, T.; Müller-Plathe, F.; Milano, G. Fast Relaxation of Coarse-grained Models of Polymer Interphases by Hybrid Particle-field Molecular Dynamics: Polystyrene-silica Nanocomposites as an Example. Eur. Phys. J. Spec. Top. 2016, 225, 1817–1841. DOI: 10.1140/epjst/e2016-60127-0.
  • Milano, G.; Müller-Plathe, F. Mapping Atomistic Simulations to Mesoscopic Models: A Systematic Coarse-Graining Procedure for Vinyl Polymer Chains. J. Phys. Chem. B. 2005, 109, 18609–18619. DOI: 10.1021/jp0523571.
  • De Nicola, A.; Kawakatsu, T.; Milano, G. Generation of Well-relaxed All-atom Models of Large Molecular Weight Polymer Melts: A Hybrid Particle-continuum Approach Based on Particle-field Molecular Dynamics Simulations. J. Chem. Theory Comput. 2014, 10, 5651–5667. DOI: 10.1021/ct500492h.
  • Munaò, G.; Pizzirusso, A.; Kalogirou, A.; De Nicola, A.; Kawakatsu, T.; Müller-Plathe, F.; Milano, G. Molecular Structure and Multi-body Potential of Mean Force in Silica-polystyrene Nanocomposites. Nanoscale. 2018, 10, 21656–21670. DOI: 10.1039/C8NR05135F.
  • De Nicola, A.; Avolio, R.; Della Monica, F.; Gentile, G.; Cocca, M.; Capacchione, C.; Errico, M. E.; Milano, G. Rational Design of Nanoparticle/monomer Interfaces: A Combined Computational and Experimental Study of in Situ Polymerization of Silica Based Nanocomposites. RSC Adv. 2015, 5, 71336–71340. DOI: 10.1039/C5RA13154E.
  • Zhao, Y.; Byshkin, M.; Cong, Y.; Kawakatsu, T.; Guadagno, L.; De Nicola, A.; Yu, N.; Milano, G.; Dong, B. Self-assembly of Carbon Nanotubes in Polymer Melts: Simulation of Structural and Electrical Behaviour by Hybrid Particle-field Molecular Dynamics. Nanoscale. 2016, 8, 15538–15552. DOI: 10.1039/C6NR03304K.
  • De Nicola, A.; Correa, A.; Milano, G.; La Manna, P.; Musto, P.; Mensitieri, G.; Scherillo, G. Local Structure and Dynamics of Water Absorbed in Poly(ether Imide): A Hydrogen Bonding Anatomy. J. Phys. Chem. B. 2017, 121, 3162–3176. DOI: 10.1021/acs.jpcb.7b00992.
  • De Nicola, A.; Kawakatsu, T.; Milano, G. Simulations. J. Chem. Theory. Comput. 2014, 10, 5651–5667. DOI: 10.1021/ct500492h.
  • Milano, G.; Kawakatsu, T. Hybrid-MD-SCF. J. Chem. Phys. 2009, 130, 184904.
  • Pressure, I.; Back, G. Pressure Calculation. J. Chem. Phys. 2016, 133, 1–3.
  • Alfaraj, M.; Wang, Y.; Luo, Y. Enhanced Isotropic Gradient Operator. Geophys. Prospect. 2014, 62, 507–517. DOI: 10.1111/gpr.2014.62.issue-3.
  • Sevink, G. J. A.; Schmid, F.; Kawakatsu, T.; Milano, G. Combining Cell-based Hydrodynamics with Hybrid Particle-field Simulations: Efficient and Realistic Simulation of Structuring Dynamics. Soft Matter. 2017, 13, 1594–1623. DOI: 10.1039/C6SM02252A.
  • Jorgensen, W. L.; Mcdonald, N. A. Development of an All-atom Force Field for Heterocycles. Properties of Liquid Pyridine and Diazenes. J. Mol. Struct. 1998, 424, 145–155. DOI: 10.1016/S0166-1280(97)00237-6.
  • Andersen, H. C. Molecular Dynamics at Costant Pressure And/or Temperature. J. Chem. Phys. 1980, 72, 2384–2393. DOI: 10.1063/1.439486.
  • Zhao, Y.; De Nicola, A.; Kawakatsu, T.; Milano, G. Hybrid Particle-field Molecular Dynamics Simulations: Parallelization and Benchmarks. J. Comput. Chem. 2012, 33, 868–880. DOI: 10.1002/jcc.22883.
  • Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. DOI: 10.1016/0010-4655(95)00042-E.
  • Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molcular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684. DOI: 10.1063/1.448118.
  • Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An Nlog(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. DOI: 10.1063/1.464397.
  • Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. DOI: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.
  • Alfonso, G. C.; Yan, D.; Zhou, Z. Configurational-conformational Statistics of Atactic Polypropylene. Polymer (Guildf). 1993, 34, 2830–2835. DOI: 10.1016/0032-3861(93)90128-W.
  • Allegra, G.; Bruckner, S. Copolymer Chain Statistics. The Pseudo-Stereochemical Equilibrium Approach within the Continuum of Rotational States. The Unperturbed Dimensions of Atactic Polypropylene. Macromolecules. 1977, 10, 106–113. DOI: 10.1021/ma60055a022.
  • Caputo, S.; De Nicola, A.; Donati, G.; David, A.; Raos, G.; Milano, G. All-Atom Model of Atactic 2-Vinyl Pyridine Polymer: Structural Properties Investigation by Molecular Dynamics Simulations. J. Electrochem. Soc. 2019, 166, B3309–B3315. DOI: 10.1149/2.0471909jes.
  • Clancy, T. C.; Pütz, M.; Weinhold, J. D.; Curro, J. G.; Mattice, W. L. Mixing of Isotactic and Syndiotactic Polypropylenes in the Melt. Macromolecules. 2000, 33, 9452–9463. DOI: 10.1021/ma0011035.
  • Daoulas, K. C.; Müller, M. Single Chain in Mean Field Simulations: Quasi-instantaneous Field Approximation and Quantitative Comparison with Monte Carlo Simulations. J. Chem. Phys. 2006, 125, 184904. DOI: 10.1063/1.2364506.
  • Müller, M.; Daoulas, K. C. Calculating the Free Energy of Self-assembled Structures by Thermodynamic Integration. J. Chem. Phys. 2008, 128, 24903. DOI: 10.1063/1.2818565.
  • Ladd, D. W. An Algorithm for the Binomial Distribution with Dependent Trials. J. Am. Stat. Assoc. 1975, 70, 333–340. DOI: 10.1080/01621459.1975.10479867.
  • Larson, R. G. The Structure and Rheology of Complex Fluids; Oxford university press: New York, 1999; Vol. 150.
  • Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties. 1994.
  • Liu, C.; Yu, J.; He, J.; Liu, W.; Sun, C.; Jing, Z. A Reexamination of GN0 and Me of Syndiotactic Polypropylenes with Metallocene Catalysts. Macromolecules. 2004, 37, 9279–9282. DOI: 10.1021/ma048743i.
  • Fetters, L. J.; Lohse, D. J.; Graessley, W. W. Chain Dimensions and Entanglement Spacings in Dense Macromolecular Systems. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 1023–1033. DOI: 10.1002/(ISSN)1099-0488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.