132
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Data-driven uncertainty quantification for systematic coarse-grained models

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 348-368 | Received 31 Dec 2019, Accepted 05 Apr 2020, Published online: 06 Nov 2020

References

  • Müller-Plathe, F.;. Coarse-graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back. ChemPhysChem. 2002, 3(9), 754–769. DOI: 10.1002/1439-7641(20020916)3:9<754::AID-CPHC754>3.0.CO;2-U.
  • Tschöp, W.; Kremer, K.; Hahn, O.; Batoulis, J.; Bürger, T. Simulation of Polymer Melts. I. Coarse-graining Procedure for Polycarbonates. Acta Polym. 1998, 49, 61. DOI: 10.1002/(SICI)1521-4044(199802)49:2/3<61::AID-APOL61>3.0.CO;2-V.
  • Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving Effective Mesoscale Potentials from Atomistic Simulations. J. Comput. Chem. 2003, 24(13), 1624–1636. DOI: 10.1002/jcc.10307.
  • Noid, W. G.;. Systematic Methods for Structurally Consistent Coarse-grained Models. Methods Mol. Biol. 2013, 924(9), 487–531. DOI: 10.1007/978-1-62703-017-5_19
  • Harmandaris, V.; Kremer, K. Dynamics of Polystyrene Melts through Hierarchical Multiscale Simulations. Macromolecules. 2009, 42(3), 791. DOI: 10.1021/ma8018624.
  • Harmandaris, V.; Kremer, K. Predicting Polymer Dynamics at Multiple Length and Time Scales. Soft Matter. 2009, 5(20), 3920. DOI: 10.1039/b905361a.
  • Harmandaris, V.; Kalligiannaki, E.; Katsoulakis, M.; Plechac, P. Path-space Variational Inference for Non-equilibrium Coarse-grained Systems. J. Comput. Phys. 2016, 314, 355–383. DOI: 10.1016/j.jcp.2016.03.021.
  • Rudzinski, J. F.;. Recent Progress Towards Chemically-specific Coarse-grained Simulation Models with Consistent Dynamical Properties. Computation. 2019, 7(3), 42. DOI: 10.3390/computation7030042.
  • Lyubartsev, A. P.; Laaksonen, A. Calculation of Effective Interaction Potentials from Radial Distribution Functions: A Reverse Monte Carlo Approach. Phys. Rev. E. 1995, 52(4), 3730–3737. DOI: 10.1103/PhysRevE.52.3730.
  • Lyubartsev, A. P.; Mirzoev, A.; Chen, L.; Laaksonen, A. Systematic Coarse-graining of Molecular Models by the Newton Inversion Method. Faraday Discuss. 2010, 144(1), 43–56. DOI: 10.1039/B901511F.
  • Izvekov, S.; Voth, G. A. Multiscale Coarse Graining of Liquid-state Systems. J. Chem. Phys. 2005, 123(13), 134105. DOI: 10.1063/1.2038787.
  • Izvekov, S.; Voth, G. A. Effective Force Field for Liquid Hydrogen Fluoride from Ab Initio Molecular Dynamics Simulation Using the Force-matching Method. J. Phys. Chem. B 2005 04, 109(14), 6573–6586. DOI: 10.1021/jp0456685.
  • Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Voth, G. A. Multiscale Coarse-graining and Structural Correlations: Connections to Liquid-state Theory. J. Phys. Chem. B. 2007, 111(16), 4116–4127. DOI: 10.1021/jp068549t.
  • Noid, W. G.; Krishna, V.; Izvekov, S.; Voth, G. A.; Chu, D. J.; Ayton, G. S.; Andersen, H. C. The Multiscale Coarse-graining Method. I. A Rigorous Bridge between Atomistic and Coarse-grained Models. J. Chem. Phys. 2008, 128(24), 244114. DOI: 10.1063/1.2938860.
  • Noid, W. G.; Liu, P.; Wang, Y.; Chu, J.; Andersen, H. C.; Ayton, G. S.; Izvekov, S.; Voth, G. A. The Multiscale Coarse-graining Method. II. Numerical Implementation for Coarse-grained Molecular Models. J. Chem. Phys. 2008, 128(24), 244115. DOI: 10.1063/1.2938857.
  • Chaimovich, A.; Shell, M. S. Anomalous Waterlike Behavior in Spherically-symmetric Water Models Optimized with the Relative Entropy. Phys. Chem. Chem. Phys. 2009, 11(12), 1901–1915. DOI: 10.1039/b818512c.
  • Shell, M. S.;. The Relative Entropy Is Fundamental to Multiscale and Inverse Thermodynamic Problems. J. Chem. Phys. 2008, 129(14), 144108. DOI: 10.1063/1.2992060.
  • Tsourtis, A.; Harmandaris, V.; Tsagkarogiannis, D. Parameterization of Coarse-grained Molecular Interactions through Potential of Mean Force Calculations and Cluster Expansions Techniques. Entropy. 2017, 19(8), 395. DOI: 10.3390/e19080395.
  • Katsoulakis, M. A.; Plechac, P. Information-theoretic Tools for Parametrized Coarse-graining of Non-equilibrium Extended Systems. J. Chem. Phys. 2013, 139(7), 4852–4863. DOI: 10.1063/1.4818534.
  • Katsoulakis, M. A.; Vilanova, P. Data-driven, Variational Model Reduction of High-dimensional Reaction Networks. J. Comput. Phys. 2020, 401, 108997. DOI: 10.1016/j.jcp.2019.108997.
  • Tsourtis, A.; Pantazis, Y.; Katsoulakis, M.; Harmandaris, V. Parametric Sensitivity Analysis for Stochastic Molecular Systems Using Information Theoretic Metrics. J. Chem. Phys. 2015, 143(1), 014116. DOI: 10.1063/1.4922924.
  • Efron, B.; Hastie, T. Computer Age Statistical Inference. Institute of Mathematical Statistics Monographs; (Institute of Mathematical Statistics Monographs). Cambridge: Cambridge University Press, 2016. doi:10.1017/CBO9781316576533
  • Wasserman, L.;. All of Statistics: A Concise Course in Statistical Inference; Springer Texts in Statistics: Springer New York, 2010.
  • Wasserman, L.;. All of Nonparametric Statistics; Springer-Verlag New York: Springer Science & Business Media, 2006.
  • Pu, L.; Qiang, S.; Hal, D.; Voth, G. A. A Bayesian Statistics Approach to Multiscale Coarse Graining. J. Chem. Phys. 2008, 129(21), 214114. DOI: 10.1063/1.3033218.
  • Farrell-Maupin, K.; Oden, J. T. Adaptive Selection and Validation of Models of Complex Systems in the Presence of Uncertainty. Res. Math. Sci. 14 Aug 2017, 4(1) DOI: 10.1186/s40687-017-0104-2
  • Farrell, K.; Oden, J. T.; Faghihi, D. A Bayesian Framework for Adaptive Selection, Calibration, and Validation of Coarse-grained Models of Atomistic Systems. J. Comput. Phys. 2015, 295, 189–208. DOI: 10.1016/j.jcp.2015.03.071.
  • Schöberl, M.; Zabaras, N.; Koutsourelakis, P.-S. Predictive Coarse-graining. J. Comput. Phys. 2017, 333, 49–77. DOI: 10.1016/j.jcp.2016.10.073.
  • Felsberger, L.; Koutsourelakis, P.-S. Physics-constrained, Data-driven Discovery of Coarse-grained Dynamics. Commun. Comput. Phys. 2019, 25(5), 1259–1301. DOI: 10.4208/cicp.OA-2018-0174.
  • Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P. Bayesian Uncertainty Quantification and Propagation in Molecular Dynamics Simulations: A High Performance Computing Framework. J. Chem. Phys. 2012, 137(14), 144103. DOI: 10.1063/1.4757266.
  • Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P. Data Driven, Predictive Molecular Dynamics for Nanoscale Flow Simulations under Uncertainty. J. Phys. Chem. B. 2013, 117(47), 14808–14816. DOI: 10.1021/jp4084713.
  • Dutta, R.; Brotzakis, Z. F.; Mira, A. Bayesian Calibration of Force-fields from Experimental Data: Tip4p Water. J. Chem. Phys. 2018, 149(15), 154110. DOI: 10.1063/1.5030950.
  • Frederiksen, S. L.; Jacobsen, K. W.; Brown, K. S.; Sethna, J. P. Bayesian Ensemble Approach to Error Estimation of Interatomic Potentials. Phys. Rev. Lett. Oct 2004, 93(16), 165501. DOI: 10.1103/PhysRevLett.93.165501.
  • Dupuis, P.; Katsoulakis, M. A.; Pantazis, Y.; Plecháč, P. Path-space Information Bounds for Uncertainty Quantification and Sensitivity Analysis of Stochastic Dynamics. SIAM J. Uncert. Quant. 2016, 4(1), 80–111. DOI: 10.1137/15M1025645.
  • Efron, B.;. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979 01, 7(1), 1–26. DOI: 10.1214/aos/1176344552.
  • Miller, R. G.;. The Jackknife–A Review. Biometrika. 1974, 61(1), 1–15.
  • Weymuth, T.; Proppe, J.; Reiher, M. Statistical Analysis of Semiclassical Dispersion Corrections. J. Chem. Theory Comput. 2018, 14(5), 2480–2494. DOI: 10.1021/acs.jctc.8b00078.
  • Proppe, J.; Reiher, M. Reliable Estimation of Prediction Uncertainty for Physicochemical Property Models. J. Chem. Theory Comput.2017, 13(7), 3297–3317. PMID: 28581746. DOI: 10.1021/acs.jctc.7b00235.
  • Longbottom, S.; Brommer, P. Uncertainty Quantification for Classical Effective Potentials: An Extension to Potfit. Model. Simul. Mat. Sci. Eng. 2019, 27(4), 044001. DOI: 10.1088/1361-651X/ab0d75.
  • Jacobson, L. C.; Kirby, R. M.; Molinero, V. How Short Is Too Short for the Interactions of a Water Potential? Exploring the Parameter Space of a Coarse-Grained Water Model Using Uncertainty Quantification. J. Phys. Chem. B. 2014, 118(28), 8190–8202. DOI: 10.1021/jp5012928.
  • Harmandaris, V.; Mavrantzas, V. G.; Theodorou, D.; Kröger, M.; RamÃ-rez, J.; Öttinger, H. C.; Vlassopoulos, D. Dynamic Crossover from Rouse to Entangled Polymer Melt Regime: Signals from Long, Detailed Atomistic Molecular Dynamics Simulations, Supported by Rheological Experiments. Macromolecules. 2003, 36, 1376–1387. DOI: 10.1021/ma020009g.
  • Harmandaris, V.; Kalligiannaki, E.; Katsoulakis, M. Computational Design of Complex Materials Using Information Theory: From Physics- to Data-driven Multi-scale Molecular Models. ERCIM News. Special theme: Digital Twins, 115, 2018.
  • Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; New York: Oxford University Press, New, Clarendon Press, 1986.
  • DiCiccio, T. J.; Efron, B. Bootstrap Confidence Intervals. Statistical Science,189–212, 1996.
  • Jones, G. L.;. On the Markov Chain Central Limit Theorem. Probab. Surv. 1(2004), 299–320. doi:10.1214/154957804100000051.
  • Jones, G. L.; Haran, M.; Caffo, B. S.; Neath, R. Fixed-width Output Analysis for Markov Chain Monte Carlo. J. Am. Stat. Assoc. 2006, 101(476), 1537–1547. DOI: 10.1198/016214506000000492.
  • Casella, G.; Berger, R. L. Statistical Inference. Duxbury Advanced Series in Statistics and Decision Sciences; Boston, MA: Thomson Learning, 2002.
  • Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer series in statistics: New York, 2001; Vol. 1(10).
  • Oksendal, B.;. Stochastic Differential Equations: An Introduction with Applications; Springer-Verlag Berlin Heidelberg, 2003.
  • Freidlin, M. I.; Szucs, J.; Wentzell, A. D. Random Perturbations of Dynamical Systems. Grundlehren der mathematischen Wissenschaften; Springer: New York, 2012.
  • Shao, J.; Wu, C. J. A General Theory for Jackknife Variance Estimation. The Annals of Statistics, 1176–1197, 1989.
  • Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes; Cambridge: Cambridge University Press, 2007.
  • Bačová, P.; Glynos, E.; Anastasiadis, S.; Harmandaris, V. Nanostructuring Single-molecule Polymeric Nanoparticles via Macromolecular Architecture. ACS Nano. 2019, 13(2), 2439–2449. DOI: 10.1021/acsnano.8b09374.
  • Rissanou, A.; Bačová, P.; Harmandaris, V. Investigation of the Properties of Nanographene in Polymer Nanocomposites through Molecular Simulations: Dynamics and Anisotropic Brownian Motion. PCCP. 2019, 21, 23843–23854. DOI: 10.1039/C9CP02074H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.