244
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The ensemble of immobilized superparamagnetic nanoparticles: the role of the spatial distribution in the sample

ORCID Icon, & ORCID Icon
Pages S1-S9 | Received 10 Jun 2021, Accepted 15 Jul 2021, Published online: 08 Aug 2021

References

  • Borin, D.; Stepanov, G.; Dohmen, E. Hybrid Magnetoactive Elastomer with a Soft Matrix and Mixed Powder. Arch. Appl. Mech. 2019, 89(1), 105–117. DOI: 10.1007/s00419-018-1456-9.
  • Sanchez, L.; Actis, D.; Gonzalez, J.; Z ́elis, P.; Alvarez, V. Effect of PAA-coated Magnetic Nanoparticles on the Performance of PVA-based Hydrogels Developed to Be Used as Environmental Remediation Devices. J. Nanopart. Res. 2019, 21(3), 64. DOI: 10.1007/s11051-019-4499-0.
  • Zhang, Q.; Peng, B.; Li, H.; Sun, J. Magnetically Tunable Transparency for Magnetorheological Elastomer Films Consisting of Polydimethylsiloxane and Fe3O4nanoparticles. Soft Mater. 2018, 16(3), 220–227. DOI: 10.1080/1539445X.2018.1478307.
  • Becker, T. I.; Raikher, Y. L.; Stolbov, O. V.; Bohm, V.; Zimmermann, K. Dynamic Properties of Magneto-sensitive Elastomer Cantilevers as Adaptive Sensor Elements. Smart. Mater. Struct. 2017, 26(9), 095035. DOI: 10.1088/1361-665X/aa75ec.
  • Barkhordari, S.; Alizadeh, A.; Yadollahi, M.; Namazi, H. One-pot Synthesis of Magnetic Chitosan/iron Oxide Bio-nanocomposite Hydrogel Beads as Drug Delivery Systems. Soft Mater. 2020. in print. https://doi.org/10.1080/1539445X.2020.1829642
  • Yang, C.; Liu, Z.; Yu, M.; Bian, X. Magnetic Nanofluid Based on Amorphous Fe-Ni-B@OA Particles Applied in the Treatment of Oil Slick. Soft Mater. 2021, 19(2), 159–167. DOI: 10.1080/1539445X.2020.1784229.
  • Dutz, S.; Hergt, R. Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy. Int. J. Hyperthermia. 2013, 29(8), 790–800. DOI: 10.3109/02656736.2013.822993.
  • Antonel, P.; Oliveira, C.; Jorge, G.; Perez, O.; Leyva, A.; Negri, R. Synthesis and Characterization of CoFe2O4 Magnetic Nanotubes, Nanorods and Nanowires. Formation of Magnetic Structured Elastomers by Magnetic Field-induced Alignment of CoFe2O4 Nanorods. J. Nanopart. Res. 2015, 17(7), 294. DOI: 10.1007/s11051-015-3073-7.
  • Weeber, R.; Hermes, M.; Schmidt, A.; Holm, C. Polymer Architecture of Magnetic Gels: A Review. J. Phys.: Condens. Matter. 2018, 30(6), 063002.
  • Ganesan, V.; Lahiri, B.; Louis, C.; Philip, J.; Damodaran, S. Size-controlled Synthesis of Superparamagnetic Magnetite Nanoclusters for Heat Generation in an Alternating Magnetic Field. J. Mol. Liq. 2019, 281, 315–323. DOI: 10.1016/j.molliq.2019.02.095.
  • Zhang, X.; Peng, S.; Wen, W.; Li, W. Analysis and Fabrication of Patterned Magnetorheological Elastomers. Smart Mater. Struct. 2008, 17(4), 045001. DOI: 10.1088/0964-1726/17/4/045001.
  • Asadi Khanouki, M.; Sedaghati, R.; Hemmatian, M. Experimental Characterization and Microscale Modeling of Isotropic and Anisotropic Magnetorheological Elastomers. Compos. Part B: Eng. 2019, 176, 107311. DOI: 10.1016/j.compositesb.2019.107311.
  • Elder, B.; Neupane, R.; Tokita, E.; Ghosh, U.; Hales, S.; Kong, Y. L. Nanomaterial Patterning in 3D Printing. Adv. Mater. 2020, 32(17), 1907142. DOI: 10.1002/adma.201907142.
  • Bastola, A.; Paudel, M.; Li, L. Line-patterned Hybrid Magnetorheological Elastomer Developed by 3D Printing. J. Intell. Mater. Syst. Struct. 2020, 31(3), 377–388. DOI: 10.1177/1045389X19891557.
  • Shliomis, M.; Stepanov, V. Theory of the Dynamic Susceptibility of Magnetic Fluids. Adv. Chem. Phys. 1994, 87, 1–30.
  • Yoshida, T.; Matsugi, Y.; Tsujimura, N.; Sasayama, T.; Enpuku, K.; Viereck, T.; Schilling, M.; Ludwig, F. Effect of Alignment of Easy Axes on Dynamic Magnetization of Immobilized Magnetic Nanoparticles. J. Magn. Magn. Mater. 2017, 427, 162–167. DOI: 10.1016/j.jmmm.2016.10.040.
  • Elfimova, E.; Ivanov, A.; Camp, P. Static Magnetization of Immobilized, Weakly Interacting, Superparamagnetic Nanoparticles. Nanoscale. 2019, 11(45), 21834–21846. DOI: 10.1039/C9NR07425B.
  • Solovyova, A.; Kuznetsov, A.; Elfimova, E. Interparticle Correlations in the Simple Cubic Lattice of Ferroparticles: Theory and Computer Simulations. Phys. A Stat. Mech. Appl. 2020, 558, 124923. DOI: 10.1016/j.physa.2020.124923.
  • Tao, R.; Sun, J. M. Three-dimensional Structure of Induced Electrorheological Solid. Phys. Rev. Lett. 1991, 67(3), 398–401. DOI: 10.1103/PhysRevLett.67.398.
  • Groh, B.; Dietrich, S. Crystal Structures and Freezing of Dipolar Fluids. Phys. Rev. E. 2001, 63(2I), 021203. DOI: 10.1103/PhysRevE.63.021203.
  • Spiteri, L.; Messina, R. Dipolar Crystals: The Crucial Role of the Clinohexagonal Prism Phase. Phys. Rev. Lett. 2017, 119(15), 155501. DOI: 10.1103/PhysRevLett.119.155501.
  • Elfimova, E. A.; Ivanov, A. O.; Camp, P. J. Thermodynamics of Dipolar Hard Spheres with Low-to-intermediate Coupling Constants. Phys. Rev. E. 2012, 86(2), 021126. DOI: 10.1103/PhysRevE.86.021126.
  • Vtulkina, E. D.; Elfimova, E. A. Thermodynamic and Magnetic Properties of Ferrofluids in External Uniform Magnetic Field. J. Magn. Magn. Mater. 2017, 431, 218–221. DOI: 10.1016/j.jmmm.2016.08.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.